Identification of SNP markers associated with antler growth rate in sika deer (Cervus nippon)

DOI: https://doi.org/10.21203/rs.3.rs-44991/v1

Abstract

Sika deer (Cervus nippon) constitutes one of the most valuable animal genetic resources in east Asia. The aim of this study was to identify and validate single nucleotide polymorphisms (SNPs) from antler growth-related genes of sika deer. The whole genome sequencing data of sika deer were used to identify SNP markers. Among them, 31 SNPs from antler growth-related genes exhibited significant polymorphism using genotyping by mass spectrometry. The observed and expected heterozygosities were ranged from 0.147 to 0.997 and 0.201 to 0.500, respectively. Significant deviation from the Hardy-Weinberg equilibrium was observed in 6 loci. These findings provide effective molecular detection markers for the study of variation in antler growth rate of sika deer.

Background

Sika deer (Cervus nippon) were once widely distributed in eastern Asian countries, and this species is one of the most commercially valuable species for production of high value velvet antler for medicinal use (Hu et al. 2019). There are large herds of farmed animals kept mainly for production of velvet antlers where the antler growth rate is the key factor that determines the profitability of deer farming. Therefore, the identification of molecular markers associated with antler growth-related genes offers potential for application in the selection of sika deer (especially females who do not grow antlers) for artificial breeding.

Single nucleotide polymorphisms (SNPs) have been widely used for investigating genetic diversity, species identification and for exploring potential applications in breeding for deer (Ba et al. 2017), cattle (Zhang et al. 2019) and goats (Ee et al. 2019). Using the genome sequencing data of the sika deer individuals with fast and slow growing velvet antler status (Genbank accession number:PRJNA541418), we have obtained a large number of SNPs.

We utilized the mass spectrometry SNP detection technology combined with multiplex PCR, single base extension and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) to identify SNP variation in individual deer. This technology offers advantages as up to 40-fold multiplex PCR reactions and genotype detection can be run at one time, and can be used simultaneously on thousands of samples at numerous SNP sites, with an accuracy of up to 98% (Colombo et al. 2019; Jiménez-Sousa et al. 2019).

The genomic and transcriptomic sequencing data of fast growing velvet antlers compared with slow growing velvet antlers were analyzed and antler growth-related genes were identified. The gene sequence containing SNP sites was extracted from the sequencing data of our sika deer genome, and a total of 31 SNPs were selected. In order to validate the polymorphisms at these SNP loci, PCR reactions and single base extension primers were designed using the software MASARRAY assay design suite v3.1 (Table 1). Genomic DNA was extracted from peripheral venous blood of farmed sika deer (from northern China) using whole blood genome DNA isolation kit (BioTeke Corporation, Beijing, China). The PCR amplification, shrimp alkaline phosphatase (SAP) digestion, and extension reaction were carried out sequentially; the reaction product (9 μl in total) was diluted 3 times, desalinated with resin, and the desalted sample was placed on the sample target and allowed to crystallize naturally. Mass spectrometry detection was carried out and data collected. The original results were sorted out and detection rate of each SNP loci was calculated. Population genetic indexes including expected heterozygosity (He), observed heterozygosity (Ho), Hardy-Weinberg equilibrium (HWE) and Minor Allele Frequency (MAF) were calculated using Haploview 4.1 software.

Samples from a total of 384 farmed sika deer were analyzed. The detection rate for the 31 SNP loci was ranged from 83% to 100%. There was a high degree of polymorphism among the 31 loci and the MAF was ranged from 0.113 to 0.499. The He and the Ho were ranged from 0.201 to 0.500 and from 0.147 to 0.997, respectively. Significant deviation from Hardy-Weinberg equilibrium was observed in 6 loci (Table 2).

Our findings provide the basis for the investigation of the potential for the application of molecular markers in the selection of sika deer for breeding.

Declarations

Acknowledgements

This work was supported by the Scientific Research Starting Foundation, Changchun Sci-Tech University, China. We wish to thank Dr Peter Fennessy of AbacusBio Limited in New Zealand for his kind help in reviewing the manuscript.

References

  1. Ba H, Jia B, Wang G, Yang Y, Kedem G, Li C (2017) Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon) in Northeast China Using Double-Digest Restriction Site-Associated DNA Sequencing G3 (Bethesda) 7:3169–3176 doi:10.1534/g3.117.300082
  2. Colombo C et al. (2019) Impact of Mutation Density and Heterogeneity on Papillary Thyroid Cancer Clinical Features and Remission Probability Thyroid : official journal of the American Thyroid Association 29:237–251 doi:10.1089/thy.2018.0339
  3. Ee G-X, Zhou DK, Yang BG, Duan XH, Na RS, Han YG, Zeng Y (2019) Association analysis of sixty-seven single nucleotide polymorphisms with litter size in Dazu Black goats Animal Genetics 51 doi:10.1111/age.12879
  4. Hu P, Wang T, Liu H, Xu J, Wang L, Zhao P, Xing X (2019) Full-length transcriptome and microRNA sequencing reveal the specific gene-regulation network of velvet antler in sika deer with extremely different velvet antler weight Molecular genetics and genomics : MGG 294:431–443 doi:10.1007/s00438-018-1520-8
  5. Jiménez-Sousa MA et al. (2019) VDR rs2228570 Polymorphism Is Related to Non-Progression to AIDS in Antiretroviral Therapy Naïve HIV-Infected Patients Journal of Clinical Medicine 8:311
  6. Zhang F et al. (2019) Genome-Wide SNPs and InDels Characteristics of Three Chinese Cattle Breeds Animals 9 doi:10.3390/ani9090596

Tables

Table 1 Primer sequence and product length used in SNPs verification

Gene

1st-PCR primer sequence

2nd-PCR primer sequence

Single base extension primer sequence   Product length(bp)

 

PIGN

ACGTTGGATGCAGTTCAGTTCATTCAGTAG

ACGTTGGATGAACTCTGGGAGTTGGTGATG

ACGCAAAGAGTCGGACAC

119

 

RPL12

ACGTTGGATGTTCCACATCCCTTCAGTTTG

ACGTTGGATGAGCTGTTACAGGCAGATCTC

CTCTACTGCACTTCACAGAGAGTGAG

104

 

ATF6

ACGTTGGATGACTTGAACCTCCTCCTCCAG

ACGTTGGATGGACAGATAGCTAATGGGAAG

TAGCTAATGGGAAGCTGCTG

119

 

ARPC1A

ACGTTGGATGCATGCTTTTTGCTGGCTTCC

ACGTTGGATGGACCAGGATTCAAGTGCAAG

CCTGAGAGGTGGCAGAG

100

 

FGFR2

ACGTTGGATGGTTTATTGGGAGCAGGTATC

ACGTTGGATGTAATGTGGTCCATGGGAAGG

GGATGAGAGATACTTCTTTTG

107

 

ECPAS

ACGTTGGATGAACTCTTCATCGGTAACCTC

ACGTTGGATGGCATAAGTCAACCAGTACCC

GCACTATACAAGCATTCCAT

92

 

CTSC

ACGTTGGATGAAGGACAGACTTGTCATGCG

ACGTTGGATGCTCTGGAGGAGTAAAGTAGG

AGTAGGTTGGCATAACTT

101

NPM1

ACGTTGGATGTGAGCGCTGACAATGACACC

ACGTTGGATGAAGGCCAGGACCTAGCCGA

GAGCCTGGCGGCAGGAACAATG

119

RPS20

ACGTTGGATGTGGATGGAGGTAAGAATGGG

ACGTTGGATGGGGTGGGATGGAAGGGTTA

GGAAGGGTTAGGTGGA

103

ATP1A1

ACGTTGGATGTGGTACAGAGACACTTGAGG

ACGTTGGATGTTCAGACCCTCAGAGAAGGC

GGGACGCAGCCGCAGCTGT

125

SPPL2A

ACGTTGGATGTGTACTACTAAGCCTCTGCC

ACGTTGGATGGGTCAAATAGCAGCAATTTC

GGGTTTCTTGTTGGTGCATG

80

TRPM7

ACGTTGGATGGCAGTAACAGTCTGTTTGCC

ACGTTGGATGGGCTTAGTTACCTACTTTCC

GACAGTTTGTAGTACACTAGGAATGA

101

NPC1

ACGTTGGATGCAGTCCCAATGACCGGAATT

ACGTTGGATGAATAAAGTCCTGGCCGATGC

GGGTGCTGTGGCCATTTGGA

86

PDCD6IP

ACGTTGGATGTCTGAATCCCATACAGAAGG

ACGTTGGATGCTTGGAGCAGTTGAATAGCC

CCCCAGTTGAATAGCCATTTCCCA

120

ARPC2

ACGTTGGATGGCCCCAAAGAGAAAAAAAGG

ACGTTGGATGTTAAAGCCAATCAACCCACC

AACCCACCAACCCAG

125

YTHDF2

ACGTTGGATGGAATCAGATGACCCTGCTTG

ACGTTGGATGAGTAAGGCTGTGTAATGCTC

TCATAGATTTGGGCAGTCA

94

BAIAP2

ACGTTGGATGACGGCTTTCTGTGCTCATGG

ACGTTGGATGAAGGTGCAGCTCTGCACACG

TGGACCCAGATAGCA

127

IGF1R

ACGTTGGATGAAAGTTGCTTCCTGCTGACC

ACGTTGGATGCAATGAGTGTGTCCATGACG

CACACGGCGGGAGTGC

111

ITGB5

ACGTTGGATGTCTGCAGCCAGGCTACATC

ACGTTGGATGTCTGTTCTCCAGCATCAATC

GAACCACAGCCCCAGAGGCA

100

NCAM1

ACGTTGGATGAATGAGAGAGACAGTTTGGC

ACGTTGGATGACCCGTGGAATTGATCTGAC

TACAACATGTTTAGAGGAAATTATA

153

CCNY

ACGTTGGATGTGTTGTTGCAAATGGCAGGG

ACGTTGGATGGGGTAAAGGAAATGTGAGAG

AAATGTGAGAGATAGATACAAG

112

MSRB3

ACGTTGGATGACCCAGTAAAGCAATGGCAG

ACGTTGGATGGTGACATTTCCATTCGCCAC

ACGTCCTGGTGACCATAACATAAATC

99

AOPEP

ACGTTGGATGTTTCATGCATCTGACAGGCG

ACGTTGGATGGGAAATGAAAACGGCTAAGG

CTAAGGACATATGAAAGCTCA

116

RPL7

ACGTTGGATGCCTGCTAAAGCTGACTCAAG

ACGTTGGATGCAACCATCTATTTGGTTGGC

CCTGTGGTTGGCCAAATATTCTTT

125

B4GALT1

ACGTTGGATGACAAACTGAGGCACAGAGAG

ACGTTGGATGCCTGTCTTCAGATCCTGTTG

TCGCTGCTTCTTCCCAGTTTCA

100

FMNL2

ACGTTGGATGAGGTCAAACCACCACTAACG

ACGTTGGATGATTGTCTAGGCCTCACAGTC

GTTGTGGTGATGGGGTGCTTGTG

105

STAM2

ACGTTGGATGTTTGAGTTGGCTAGGGATGG

ACGTTGGATGTATGCTTTTGGTGTCCTCCC

TGTACTCCCTGGTCTCCTT

84

GUCY1B1

ACGTTGGATGACAGAAACTGGCTCACAGAC

ACGTTGGATGCTCCTAATTTATCCCTCCCC

TTTATCCCTCCCCAACCCACTTTC

101

CHFR

ACGTTGGATGTGTGGTTCAGAGCAGCGAG

ACGTTGGATGTTCTTACACAAACGGGTGGC

GGTGGCTACTTCCCTG

96

ENAH

ACGTTGGATGACCTGGAAGTCCTTTCCCTC

ACGTTGGATGAACAGTGACAGTGGAGATGG

TGGAGATGGTTTGGCG

124

RAB3GAP2

ACGTTGGATGGAGTCTGTTCATCAGCATCC

ACGTTGGATGGTAGTCCCTGACCTCGTATA

GTCCCTGACCTCGTATAAATCTAAG

105

 

Table 2 Summary of the 31 SNP markers in the farmed sika deer

Gene

Site

SNP

Position

Detection rate

MAF

Ho

He

PHWE

Function

IGF1R

A11323595G

A/G

intronic

97.1

0.403

0.147

0.481

0.000

Insulin-like growth factor 1 receptor

ARPC1A

G666285T

G/T

intergenic

99.7

0.482

0.963

0.499

0.000

Actin-related protein 2/3 complex subunit 1A

SPPL2A

C4458043T

C/T

intronic

85.2

0.384

0.731

0.473

0.000

Signal peptide peptidase-like 2A

PDCD6IP

G6429786T

G/T

intronic

99.7

0.193

0.193

0.312

0.000

Programmed cell death 6-interacting protein

PIGN

A10067G

A/G

intronic

97.7

0.499

0.997

0.500

0.000

GPI ethanolamine phosphate transferase 1

NCAM1

A16125736G

A/G

intronic

93.0

0.249

0.230

0.374

0.000

Neural cell adhesion molecule 1

FGFR2

A950852T

A/T

intergenic

96.1

0.369

0.417

0.465

0.058

Fibroblast growth factor receptor 2

ATF6

A349957G

A/G

intronic

96.6

0.283

0.410

0.406

0.983

Cyclic AMP-dependent transcription factor ATF-6 alpha

ATP1A1

A4017558C

A/C

downstream

100

0.299

0.438

0.420

0.492

Sodium/potassium-transporting ATPase subunit alpha-1

ARPC2

A9730945G

A/G

intronic

86.2

0.437

0.462

0.492

0.310

Actin-related protein 2/3 complex subunit 2

RPL12

C176548G

C/G

intergenic

98.2

0.241

0.355

0.366

0.640

60S ribosomal protein L12

ECPAS

A1394979G

A/G

intronic

99.7

0.497

0.509

0.500

0.818

Proteasome adapter and scaffold protein ECM29

CTSC

A1466419C

A/C

intronic

99.5

0.301

0.366

0.421

0.016

Dipeptidyl peptidase 1

NPM1

C3449425T

C/T

intronic

86.2

0.196

0.320

0.316

0.966

Nucleophosmin

RPS20

G3550486T

G/T

intergenic

99.5

0.223

0.340

0.346

0.831

40S ribosomal protein S20

TRPM7

C4511966T

C/T

intergenic

97.9

0.117

0.202

0.207

0.803

Transient receptor potential cation channel subfamily M member 7

NPC1

C4874303T

C/T

intronic

99.7

0.275

0.373

0.399

0.246

NPC intracellular cholesterol transporter 1

YTHDF2

C11089790T

C/T

intergenic

98.4

0.190

0.323

0.308

0.482

YTH domain-containing family protein 2

BAIAP2

A11133199G

A/G

intronic

100

0.203

0.307

0.324

0.385

Brain-specific angiogenesis inhibitor 1-associated protein 2

ITGB5

C11629896T

C/T

intronic

99.5

0.355

0.474

0.458

0.585

Integrin beta-5

CCNY

A18285014G

A/G

intergenic

98.7

0.113

0.201

0.201

1.000

Cyclin-Y

MSRB3

A19289133G

A/G

intronic

99.2

0.425

0.525

0.489

0.189

Methionine-R-sulfoxide reductase B3

AOPEP

C19630193T

C/T

intronic

99.2

0.266

0.375

0.391

0.499

Aminopeptidase O

RPL7

C23029824T

C/T

intergenic

99.7

0.377

0.462

0.470

0.809

60S ribosomal protein L7

B4GALT1

C25769614T

C/T

intergenic

99.0

0.303

0.400

0.422

0.354

Beta-1,4-galactosyltransferase 1

FMNL2

C36393203T

C/T

intronic

99.5

0.382

0.482

0.472

0.799

Formin-like protein 2

STAM2

C36759498T

C/T

intergenic

100

0.486

0.570

0.500

0.008

Signal transducing adapter molecule 2

GUCY1B1

C38343077T

C/T

intronic

82.8

0.121

0.192

0.213

0.138

Guanylate cyclase soluble subunit beta-1

CHFR

C39032898T

C/T

upstream

96.6

0.144

0.251

0.247

0.978

E3 ubiquitin-protein ligase CHFR

ENAH

A50172608G

A/G

intronic

90.6

0.135

0.270

0.234

0.001

Protein enabled homolog

RAB3GAP2

A54841857G

A/G

intronic

94.0

0.375

0.496

0.469

0.341

Rab3 GTPase-activating protein non-catalytic subunit