[1] Bassi D, Monet Rene. Botany and Taxonomy. In: Layne DR, Bassi D, editors. The Peach: Botany, Production and Use London, UK.: CABI; 2008. p. 1-36.
[2] Abdelghafar A, Burrell R, Reighard G, Gasic K. Antioxidant capacity and bioactive compounds accumulation in peach breeding germplasm. J Am Pom Soc 2018;72:40-69.
[3] Cantin CM, Moreno MA, Gogorcena Y. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agric Food Chem 2009;57[11]:4586-4592.
[4] FAOSTAT. Crops Data. 2019; Available at: http://www.fao.org/faostat/en/#data/QC. Accessed April 21, 2021.
[5] Byrne DH. Trends in stone fruit cultivar development. HortTechnology 2005;15:494-500.
[6] Lalancette N, McFarland K. Phytotoxicity of copper-based bactericides to peach and nectarine. Plant Disease - PLANT DIS 2007;91:1122-1130.
[7] Stefani E. Economic significance and control of bacterial spot/canker of stone fruits caused by Xanthomonas arboricola pv. pruni. J Plant Pathol 2010;92:S99-S103.
[8] Amiri A, Brannen PM, Schnabel G. Reduced sensitivity in Monilinia fructicola field isolates from South Carolina and Georgia to respiration inhibitor fungicides. Plant Dis 2010;94(6):737-743.
[9] Lamichhane J. Xanthomonas arboricola diseases of stone fruit, almond and walnut trees: progress toward understanding and management. Plant Dis 2014;98(12):1600-1610.
[10] Ritchie DF. Bacterial spot. In: Ogawa JM, Zehr EI, Bird GW, Ritchie DF, Uriu K, Uyemoto JK, editors. Compendium of Stone Fruit Diseases: American Phytopathological Society, St. Paul, MN; 1995. p. 50-52.
[11] Werner D, Ritchie DF, Cain DW, Zehr EI. Susceptibility of peaches and nectarines, plant introductions, and other Prunus species to bacterial spot. HortSci 1986;21(1):127-130.
[12] Okie WR. Handbook of peach and nectarine varieties : performance in the southeastern United States and index of names. District of Columbia: U.S. Dept. of Agriculture, Agricultural Research Service ; National Technical Information Service, distributor; 1998.
[13] Okie WR, Bacon T, Bassi D. Fresh market cultivar development. In: Layne DR, Bassi D, editors. The Peach: Botany, Production and Uses London, UK: CABI International; 2008. p. 139-174.
[14] Sherman WB, Lyrene PM. Bacterial leaf spot susceptibility in low chill peaches. Fruit Var J 1981;35:74-77.
[15] Yang N, Reighard G, Ritchie D, Okie W, Gasic K. Mapping quantitative trait loci associated with resistance to bacterial spot [Xanthomonas arboricola pv. pruni] in peach. Tree Genetics & Genomes 2012:1-14.
[16] Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, et al. Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE 2012;7(4):e35668.
[17] Gasic K, Reighard G, Okie W, Clark J, Gradziel T, Byrne D, et al. Bacterial spot resistance in peach: Functional allele distribution in breeding germplasm. Acta Horticulturae 2015;1084(1084):69-74.
[18] Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, Bassil N, et al. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. Hort Res 2020;7(1):177.
[19] Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, et al. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Horticulture research 2019;6:58.
[20] Jung S, Lee T, Cheng C, Buble K, Zheng P, Yu J, et al. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. NAR 2018:1-9.
[21] Peace CP. DNA-informed breeding of rosaceous crops: promises, progress and prospects. Hort Res 2017;4(1):17006.
[22] He C, Holme J, Anthony J. SNP genotyping: the KASP assay. Methods Mol Biol 2014;1145:75-86.
[23] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR [KASP]: overview of the technology and its application in crop improvement. Mol Breed 2014;33(1):1-14.
[24] Patterson EL, Fleming MB, Kessler KC, Nissen SJ, Gaines TA. A KASP genotyping method to identify Northern Watermilfoil, Eurasian Watermilfoil, and their interspecific hybrids. Front Plant Sci 2017;8.
[25] Noh Y, Lee S, Whitaker VM, Cearley KR, Cha J. A high-throughput marker-assisted selection system combining rapid DNA extraction high-resolution melting and simple sequence repeat analysis: Strawberry as a model for fruit crops. Journal of Berry Research 2017;7:23-31.
[26] Edge-Garza DA, Rowland TV, Jr., Haendiges S, Peace C. A high-throughput and cost-efficient DNA extraction protocol for the tree fruit crops of apple, sweet cherry, and peach relying on silica beads during tissue sampling. Mol Breed 2014 DEC;34(4):2225-2228.
[27] Peace CP, Luby J, Weg vd, W.E, Bink, M. C. A. M, Iezzoni AF. A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Genetics & Genomes 2014;10(6):1679-1694.