Aquifer hydraulic parameter can change during earthquakes. Continuous monitoring of the response of water level to seismic waves or solid Earth tides provides an opportunity to document how earthquakes influence hydrological properties. Here we use data of two groundwater wells, Dian-22 (D22) and Lijiang (LJ) well, in southeast Tibet Plateau in response to the 2015 Mw 7.8 Gorkha earthquake to illustrate hydrological implications. The coherences of water level and seismic wave before and after the far-field earthquake show systematic variations, which may confirm the coseismic dynamic shaking influence at high frequencies (f > 8 cpd). The tidal response of water levels in these wells shows abrupt coseismic increases of both phase shift and amplitude ratio after the earthquake, which may be interpreted as an increase in the horizontal permeability of a confined aquifer in D22 well, and an occurrence in the vertical permeability of a switched semiconfined aquifer with larger epicentral distance and but high seismic ground motion. Using the continuous transmissivity monitoring, we show that the possible preseismic initial for ~ 1 day, coseismic response for ~ 3 days and postseismic healing for ~ 10 days during the earthquake. Thus, the dynamic shaking during the Gorkha earthquake may have caused confined aquifers to semiconfined aquifers by reopening of preexisting vertical fractures and later healing at epicentral distances about 1500 km.