[1] Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382: 1708-1720. doi: 10.1056/NEJMoa2002032.
[2] Lei Gao, Dan Jiang, Xue-Song Wen, Xiao-Cheng Cheng, Min Sun, Bin He, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res. 2020; 21: 83. doi: 10.1186/s12931-020-01352-w.
[3] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; 395: 497-506. doi: 10.1016/S0140-6736(20)30183-5.
[4] Wei-Jie Guan, Zheng-Yi Ni, Yu Hu, Wen-Hua Liang, Chun-Quan Ou, Jian-xing He, et al. Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv 2020.02.06.20020974; doi: https://doi.org/10.1101/2020.02.06.20020974.
[5] Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020; 130:2620-2629. doi: 10.1172/JCI137244.
[6] Sarawar, S. R., M. Sangster, R. L. Coffman, P. C. Doherty. Administration of anti-IFN-gamma antibody to beta 2-microglobulin-deficient mice delays influenza virus clearance but does not switch the response to a T helper cell 2 phenotype. J Immunol. 1994; 153: 1246-53.
[7] Topham, D. J., R. A. Tripp, S. R. Sarawar, M. Y. Sangster, P. C. Doherty. Immune CD4+ T cells promote the clearance of influenza virus from major histocompatibility complex class II2/2respiratory epithelium. J Virol. 1996; 70: 1288-1291. doi: 10.1128/JVI.70.2.1288-1291.1996.
[8] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395: 507-513. doi: 10.1016/S0140-6736(20)30211-7.
[9] Haipeng Zhang, Ti Wu. CD4+T, CD8+T counts and severe COVID-19: A meta-analysis. J Infect. 2020; 81: e82-e84. doi: 10.1016/j.jinf.2020.06.036.
[10] Suxin Wan, Qingjie Yi, Shibing Fan, Jinglong Lv, Xianxiang Zhang, Lian Guo, et al. Characteristics of lymphocyte subsets and cytokines in Peripheral Blood of 123 hospitalized patients with 2019 novel Coronavirus pneumonia (NCP). doi: https://doi.org/10.1101/2020.02.10.20021832.
[11] Zeming Liu, Wei Long, Mengqi Tu, Sichao Chen, Yihui Huang, Shipei Wang, et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect. 2020; 81: 318-356. doi: 10.1016/j.jinf.2020.03.054.
[12] J M Urra, C M Cabrera, L Porras, I Ródenas. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients. Clin Immunol. 2020; 217: 108486. doi: 10.1016/j.clim.2020.108486.
[13] Milos Jesenak, Miroslava Brndiarova, Ingrid Urbancikova, Zuzana Rennerova, Jarmila Vojtkova, Anna Bobcakova, et al. Immune Parameters and COVID-19 Infection – Associations with Clinical Severity and Disease Prognosis. Front Cell Infect Microbiol. 2020; 10: 364. doi: 10.3389/fcimb.2020.00364.
[14] Hong-Yi Zheng, Mi Zhang, Cui-Xian Yang, Nian Zhang, Xi-Cheng Wang, Xin-Ping Yang, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020; 17: 541-543. doi: 10.1038/s41423-020-0401-3.
[15] Diane E Griffin. Are T cells helpful for COVID-19: the relationship between response and risk. J Clin Invest. 2020; 130: 6222-6224. doi: 10.1172/JCI142081.
[16] Matthew Zirui Tay, Chek Meng Poh, Laurent Rénia, Paul A MacAry, Lisa F P Ng. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20: 363-374. doi: 10.1038/s41577-020-0311-8.
[17] David Schub, Verena Klemis, Sophie Schneitler, Janine Mihm, Philipp M Lepper, Heinrike Wilkens, et al. High levels of SARS-CoV-2 specific T-cells with restricted functionality in severe course of COVID-19. JCI Insight. 2020; 5: e142167. doi: 10.1172/jci.insight.142167.
[18] Diao B, Wang CH, Tan YJ, Chen XW, Liu Y, Ning LF, et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). MedRxiv, 2020.02.18.20024364; doi: https://doi.org/10.1101/2020.02.18.20024364.
[19] Menglu Gao, Yili Liu, Mingquan Guo, Qianying Wang, Yan Wang, Jian Fan, et al. Regulatory CD4+ and CD8+ T cells are negatively correlated with CD4+ /CD8+ T cell ratios in patients acutely infected with SARS-CoV-2. J Leukoc Biol. 2020. doi: 10.1002/JLB.5COVA0720-421RR.
[20] Luka Nicin, Wesley Tyler Abplanalp, Hannah Mellentin, Badder Kattih, Lukas Tombor, David John, et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020; 41: 1804-1806. doi: 10.1093/eurheartj/ehaa311.
[21] Kamal Kant Sahu, Ahmad Daniyal Siddiqui. From Hematologist's desk: The effect of COVID-19 on the blood system. Am J Hematol. 2020; 95: E213-E215. doi: 10.1002/ajh.25849.
[22] Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020; 20: 669-677. doi: 10.1016/S1473-3099(20)30243-7.
[23] Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323: 1061-1069. doi: 10.1001/jama.2020.1585.
[24] Monica Fung, Jennifer M Babik. COVID-19 in Immunocompromised Hosts: What We Know So Far. Clin Infect Dis. 2020; ciaa863. doi: 10.1093/cid/ciaa863.