
Assessing urban atmospheric environmental
e�ciency and factors in�uencing it in China
Kai Liu  (  liukaisdnu@163.com )

Shandong Normal University
Xiaoyu Wang 

Shandong Normal University
Zongbin Zhang 

Shandong Normal University

Research Article

Keywords: Urban atmospheric environmental e�ciency, super–e�ciency slacks–based measure, spatial
autocorrelation, Geodetector

Posted Date: May 14th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-460589/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Environmental Science and Pollution
Research on August 2nd, 2021. See the published version at https://doi.org/10.1007/s11356-021-15692-
7.

https://doi.org/10.21203/rs.3.rs-460589/v1
mailto:liukaisdnu@163.com
https://doi.org/10.21203/rs.3.rs-460589/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11356-021-15692-7


Assessing urban atmospheric environmental efficiency and factors influencing it in 1 

China 2 

Kai Liua,b*, Xiaoyu Wanga, Zongbin Zhangc* 3 

a College of Geography and Environment, Shandong Normal University, Jinan 4 

250358, China 5 

b Collaborative Innovation Center of Human–Nature and Green Development in 6 

Universities of Shandong, Shandong Normal University, Jinan 250358, China 7 

c School of Economics, Shandong Normal University, Jinan 250358, China 8 

*Corresponding author.  9 

E-mail address: liukaisdnu@163.com (Kai Liu); wxyyzw0903@163.com (Xiaoyu 10 

Wang); zhangzongbin429@163.com (Zongbin Zhang). 11 

Highlights: 12 

The urban atmospheric environmental efficiency in China shows an upward trend. 13 

Urban atmospheric environmental efficiency is highest in Eastern China and lowest in 14 

Western China. 15 

Urban atmospheric environmental efficiency has a significant global spatial 16 

autocorrelation. 17 

High–high and low–low are main types of efficiency in local spatial autocorrelation. 18 

Population density, industrialization, and technology influence this efficiency. 19 

Abstract: With rapid urbanization and industrialization in developing countries, cities 20 

have become the major sources of air pollution. Studying urban atmospheric 21 

environmental efficiency has important reference value for the prevention and control 22 

of air pollution. This study used data from 267 cities in China between 2001 and 2016 23 

to assess the urban atmospheric environmental efficiency using the super-efficiency 24 

slacks-based measure model, to test the spatial characteristics of urban atmospheric 25 

environmental efficiency using the spatial autocorrelation method, and to identify 26 

factors influencing it using the Geodetector. The results are as follows: (1) The 27 

atmospheric environmental efficiency of most cities in China is increasing. The 28 



average efficiency in the entire country exhibits an upward “wavy” trend. The average 29 

urban atmospheric environmental efficiency in Eastern China is the highest and that in 30 

Western China is the lowest. (2) The urban atmospheric environmental efficiency 31 

exhibits the characteristic of global spatial autocorrelation, and high–high and 32 

low–low are the main types of efficiency in local spatial autocorrelation. (3) 33 

Population density, industrialization, and science and technology are the main factors 34 

influencing urban atmospheric environmental efficiency. 35 

Keywords: Urban atmospheric environmental efficiency; super–efficiency 36 

slacks–based measure; spatial autocorrelation; Geodetector 37 

1 Introduction 38 

Since the Reform and Opening Up in 1978, China has witnessed large-scale 39 

economic growth. Its gross domestic product (GDP) increased from 367.87 billion 40 

yuan in 1978 to 99086.51 billion yuan in 2019 (National Bureau of Statistics of China, 41 

2020), and it has been the second-largest economy in the world since 2010. With 42 

increasing economic growth, remarkable progress has been made in optimizing the 43 

economic structure, infrastructure construction, urbanization, foreign trade, science 44 

and technology, and improving the living standards of the people. As in other 45 

developing countries, extensive and inefficient modes of development, the 46 

consumption of a large amount of resources, and increasing pollutant emissions have 47 

created the problems of environmental pollution and ecological degradation in China, 48 

and caused significant damage to the natural environment on which human survival 49 

and development depends (Cui et al., 2019). The economic losses caused by 50 

environmental pollution amount to 54 billion dollars every year, and account for 8% 51 

of China’s GDP (World Bank, 1997). Air pollution is the most easily detectable and 52 

most widespread problem of ecological and environmental problems. Significant air 53 

pollution harms the physical and mental health of residents (Liu et al., 2017). China 54 

has been promoting the construction of an ecological civilization since 2012, and 55 

since then ecological protection and environmental governance have received 56 



unprecedented attention. However, the country is still undergoing rapid 57 

industrialization and urbanization, and the massive pressure of economic growth on 58 

the ecological environment will persist for a long time (Liu et al., 2019). The 59 

emissions of sulfur dioxide and other major pollutants were still high in China in 2018, 60 

and only 121 of its 338 cities above the prefecture level met the standards of ambient 61 

air quality. In the Global Environmental Performance Index Report for 2020, China 62 

ranks 137 out of 180 countries in terms of air quality (Wendling et al., 2020). Air 63 

pollution is thus a significant problem for the Chinese government. Improving the 64 

atmospheric environmental efficiency is an important way to improve the quality of 65 

air and to reduce the frequent occurrence of haze (Wang et al., 2017). This research 66 

evaluates the urban atmospheric environmental efficiency in China by analyzing the 67 

evolution of its spatial pattern and factors influencing it to provide policy 68 

recommendations for air pollution control. 69 

The remainder of this paper is arranged as follows: Section 2 provides a literature 70 

review and summarizes the contributions of this paper. Section 3 details the data and 71 

method used, including the data sources, super–efficiency slacks–based measurement 72 

(SBM) model based on unexpected output, spatial autocorrelation, and the 73 

Geodetector. Section 4 describes the results including the spatiotemporal evolution 74 

and spatial autocorrelation of urban atmospheric environmental efficiency, and factors 75 

influencing it in China. Section 5 contains the conclusions of this study and policy 76 

recommendations for the government.  77 

2 Literature review 78 

“Environmental efficiency” is an instrument for analyzing the impact of 79 

economic growth on environmental performance, and was first proposed by the 80 

Global Governance and Sustainable Economic Development Forum in 1992 (Song et 81 

al., 2013). Its essence is to use fewer resources to yield more economic output and 82 

reduce pollution emissions. A growing number of researchers have recognized the 83 

importance of assessing environmental efficiency because it can provide designers 84 

and public policymakers with quantitative information for performance evaluation, 85 

policy analysis, and public communication. All of these benefits render decisions on 86 



environmental policy more scientific, empirical, and systematic than before. 87 

Measuring environmental efficiency in different regions and sectors has become an 88 

important direction of research, and the research paradigm has gradually shifted from 89 

qualitative to quantitative research (Song et al., 2012). 90 

According to differences of in the researched regions, work on environmental 91 

efficiency can be divided into the following three types: (1) Research on the 92 

environmental efficiency of the country. Mavi and Mavi (2019) analyzed the 93 

environmental efficiency of OECD countries using the Malmquist productivity index, 94 

Switzerland was found to have the highest environmental efficiency, whereas Ireland 95 

and the USA had continually improved their efficiency. Sun et al. (2020) investigated 96 

the environmental efficiency of 104 countries using the Malmquist–Luenberger 97 

productivity index, and their results indicate that South Asia had the highest average 98 

growth over the period considered whilst East Asia recorded the lowest. Twenty-eight 99 

member countries of the European Union were taken as research object in 100 

Hermoso–Orzáez et al. (2020)’s research. France, Italy, the Netherlands, Luxembourg, 101 

Denmark, Austria, and Sweden were found to generally have high values of 102 

environmental efficiency. Due to differences in environmental efficiency among 103 

countries, Tateishi et al. (2020) analyzed the influence of institutional quality on 104 

environmental efficiency through an analytical framework that is compatible with 105 

new institutional economics and production theory. They considered the laws and 106 

regulations that have failed to address environmental quality, and concluded that 107 

highly developed institutions can play a significant role in improving the situation.  108 

(2) Research on the environmental efficiency of the province. Song et al. (2018, 109 

2019) conducted an empirical analysis of provinces in China using the meta-frontier 110 

non-radial angle efficiency model and the RSBM Malmquist–Luenberger index based 111 

on the data envelopment analysis (DEA) model. They found that provinces in the east 112 

were the most environmentally efficient while those in the central regions were the 113 

least. This result had been confirmed in one of their earlier studies, in which the four 114 

regions in order of decreasing efficiency were the east, northeast, west, and central 115 

parts of China (Song et al., 2013). Li et al. (2020) found that the southeast region of 116 



China had the highest environmental efficiency, followed by the northeast, southwest, 117 

and the northwest. They also found that investment in higher education and the 118 

development of information technology can significantly increase regional 119 

environmental efficiency. 120 

(3) Research on the environmental efficiency of the city. An et al. (2019) 121 

measured the environmental efficiency of cities in the Xiangjiang River Basin in 122 

China, and found that Chenzhou and Loudi had the highest environmental efficiencies 123 

in 2008–2014, but are smaller than other cities in the area. Sun et al. (2020)’s research 124 

reported that the overall environmental efficiency of Chinese cities had increased 125 

gradually, but the differences in environmental efficiency between cities had become 126 

greater, and the implementation of the high–speed rail had had a significant positive 127 

impact on environmental efficiency. An interesting conclusion of Zhang et al. (2019)’s 128 

research is that the top three performers in terms of environmental efficiency were 129 

Shenzhen, Sanya, and Erdos, whereas Baiyin, Xinzhou, and Liupanshui were the 130 

bottom three performers. Lu et al. (2020) found that the average value of overall 131 

environmental efficiency of 273 prefecture-level cities in China was only 0.523, and 132 

was high in the eastern region, and low in the central and western regions. 133 

According to research sectors, research on environmental efficiency can be 134 

divided into the following three types: (1) Research on the environmental efficiency 135 

of the agriculture sector. Drews et al. (2020) considered an increase in 136 

energy-corrected milk yield per cow and the amount of energy-corrected milk yield 137 

produced per area of agricultural land, accompanied by an improvement in 138 

environmental efficiency. Exposito and Velasco (2020) studied the environmental 139 

efficiency of the agricultural sector in the use of mineral fertilizers in European 140 

countries using the DEA methodology. Belgium–Luxembourg, Denmark, the 141 

Netherlands, Sweden, and the United Kingdom registered persistently high values of 142 

the estimated indices. Tothmihaly et al. (2019) explored a sustainable increase in 143 

cocoa production, i.e., without causing deforestation, and found that increasing 144 

environmental efficiency can help realize a win–win–win situation: more cocoa 145 

production with more native rainforest plants on fewer hectares. Adenuga et al. (2018) 146 



assessed the environmental efficiency of dairy farms in the four regions of the island 147 

of Ireland using an environmental DEA approach and found regional differences in 148 

environmental efficiency, with greater nutrient surpluses in Northern Ireland 149 

compared with the three regions in the Republic of Ireland. 150 

(2) Research on the environmental efficiency of the industrial sector. Wang et al. 151 

(2020) used a process-level DEA method to evaluate the environmental efficiency of 152 

54 enterprises in the iron and steel industry in China, and found that 12 enterprises 153 

had processes with low environmental efficiency whereas 25 had unbalanced 154 

environmental performance. Long et al. (2018) investigated the environmental 155 

efficiency of 192 thermal power plants using the meta–frontier directional 156 

slacks–based measure, and found that the environmental efficiency had increased 157 

from 2009 to 2010 and declined in 2011. Sun et al. (2020) explored the effect of 158 

market segmentation on the environmental efficiency of electric power industry and 159 

claimed that market segmentation hinders technological innovation. Yang and Li 160 

(2021) reported that the relationship between foreign direct investment and industrial 161 

environmental efficiency is U–shaped.  162 

(3) Research on the environmental efficiency of the transportation sector. Cui 163 

and Jin (2020) studied the environmental efficiency of the airline industry by using 164 

the network modified slacks–based measurement model, and found that its 165 

environmental efficiency was lower than its production efficiency. Zhu et al. (2020) 166 

applied the DEA model to evaluate the environmental efficiency of China’s 167 

transportation sectors, and showed that some regions had low sustainability–related 168 

efficiency. Gong et al. (2019) investigated the environmental efficiency of shipping 169 

enterprises and found similar negative environmental impacts. 170 

The research method and paradigm of environmental efficiency have 171 

significantly improved through work on different regions and sectors. The 172 

environment is a complex system composed of various elements, and can include the 173 

atmospheric, water, and soil environments. The prevalent research has studied the 174 

efficiency of the environment as a whole, whereas examining the efficiency of a 175 

certain element in the environmental system is more valuable. Wang et al. (2016, 176 



2018) studied the atmospheric environmental efficiency of provinces in China and 177 

cities in the Yangtze River Basin. However, no research has examined the atmospheric 178 

environmental efficiency of all cities in a country. In this paper, data on 267 cities 179 

above the prefecture level between 2001 and 2016 were used to assess their 180 

atmospheric environmental efficiency through the super–efficient SBM model based 181 

on unexpected output, the factors influencing atmospheric environmental efficiency 182 

were simulated using the Geodetector, and policy recommendations to improve 183 

atmospheric environmental efficiency are proposed based on the results. The 184 

contributions of this paper are as follows: (1) The study of atmospheric environmental 185 

efficiency can enrich the research content of environmental efficiency. (2) For the first 186 

time, all cities above the prefecture level in China are used as research object to 187 

examine urban atmospheric environmental efficiency. This can help explore the 188 

spatial law of atmospheric environmental efficiency, and provide policy suggestions 189 

for the Chinese government to formulate air pollution prevention and control 190 

measures.  191 

3 Data and methods 192 

3.1 Data sources 193 

The urban atmospheric environmental efficiency was calculated using input and 194 

output indicators. The research by Wang et al. (2020) is used here as reference. The 195 

input indicators consisted of capital, labor, and energy, and the output indicators of 196 

desirable and undesirable outputs. Capital is expressed using investments in fixed 197 

assets, labor using the number of employed persons in urban units, and energy is 198 

expressed by the total electricity consumption. Desirable output is expressed using the 199 

GDP and undesirable output using the concentration of PM2.5. Table 1 lists the 200 

descriptive statistics of all indicators. The concentration of PM2.5 was inverted from 201 

the global atmospheric PM2.5 concentration grid data published by the National 202 

Aeronautics and Space Administration (NASA) (http://earthdata.nasa.gov), and the 203 

other indicators were obtained from the official website of the China National Bureau 204 

of Statistics (http://www.stats.gov.cn/tjsj/).  205 

Table 1 The descriptive statistics of all indicators 206 



Indicator Variable Unit Numb

er of 

sampl

es 

Average 

value 

Median Standard 

deviation 

Maximum 

value 

Minimu

m value 

Input 

indicator 

Investment 

in fixed 

assets 

Ten 

thousan

d Yuan 

4272 
4465496.8

4 

167178

8 
6419612 

12756359

3 
302 

 Number of 

employees 

in urban 

areas 

Ten 

thousan

d people 

4272 

29.46 13.69 930471.1 791.51 0.76 

 Total 

electricity 

consumption 

Ten 

thousan

d kWh 

4272 

685504.30 316843 
1428298

9 
14860200 2248 

Expected 

output 

indicator 

GDP Ten 

thousan

d Yuan 

4272 

8068383 
264059

1 

1434933

0 

28178650

0 
50594 

Unexpecte

d output 

indicator 

PM2.5 

concentratio

n 

mcg/m³ 4272 

36.19 33.91 16.15311 90.86 4.52 

3.2 Methods 207 

3.2.1 SBM model based on unexpected output 208 

    The inputs of capital, labor, and energy can produce industrial products and 209 

economic value, but can also yield undesirables such as air pollutants; this can be 210 

considered an undesirable output. The SBM model, proposed by Tone (2001), 211 

includes the undesirable output in the production process. As this is in line with the 212 

empirical situation, it is widely used to study ecological efficiency (Chen et al., 2020), 213 

environmental efficiency (Guo et al., 2018), carbon emission efficiency (Wang and 214 

Du, 2019), and energy efficiency (Wang et al., 2019). Compared with the 215 

conventional DEA model, the SBM model can solve the problem of input–output 216 

relaxation to reflect efficiency that includes undesirable outputs (Liu et al., 2020). The 217 

SBM model was used to calculate the urban atmospheric environmental efficiency in 218 

China in this study.  219 

Consider a production system with n decision–making units, where each 220 

decision–making unit consists of three input–output vectors, and each input–output 221 

vector consists of m input units: S1 as desirable output, and S2 as undesirable output. 222 



The three input–output vectors are expressed as  𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚，𝑦𝑦𝑔𝑔 = 𝑅𝑅𝑆𝑆1，and 𝑦𝑦𝑏𝑏 ∈ 𝑅𝑅𝑆𝑆2. 223 

The matrices of X, 𝑌𝑌𝑔𝑔, and 𝑌𝑌𝑏𝑏 are as follows:  224 

 𝑋𝑋 = [𝑥𝑥1,𝑥𝑥2,∙∙∙,𝑥𝑥𝑛𝑛] ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 (1) 

 𝑌𝑌𝑔𝑔 = [𝑦𝑦1𝑔𝑔,𝑦𝑦2𝑔𝑔 ,∙∙∙,𝑦𝑦𝑛𝑛𝑔𝑔] ∈ 𝑅𝑅𝑠𝑠1×𝑛𝑛 (2) 

 𝑌𝑌𝑏𝑏 = [𝑦𝑦1𝑏𝑏,𝑦𝑦2𝑏𝑏 ,∙∙∙,𝑦𝑦𝑛𝑛𝑏𝑏] ∈ 𝑅𝑅𝑠𝑠2×𝑛𝑛 (3) 

Suppose X>0, 𝑌𝑌𝑔𝑔>0, and 𝑌𝑌𝑏𝑏>0. The production likelihood is then set as follows: 225 𝑃𝑃 = {(𝑥𝑥,𝑦𝑦𝑔𝑔 ,𝑦𝑦𝑏𝑏)|𝑥𝑥 ≥ 𝑋𝑋𝑋𝑋, 𝑦𝑦𝑔𝑔 ≥ 𝑌𝑌𝑔𝑔𝑋𝑋, 𝑦𝑦𝑏𝑏 ≤ 𝑌𝑌𝑏𝑏𝑋𝑋,𝑋𝑋 ≥ 0} (4) 

In Eq. (4), the actual desirable output is lower than the frontier ideal desirable 226 

output, and the actual undesirable output is higher than the frontier undesirable output. 227 

The SBM model with an added decision–making unit (𝑥𝑥0, 𝑦𝑦0𝑔𝑔, 𝑦𝑦0𝑏𝑏) is as follows: 228 

 

 

𝜌𝜌 = min
1− 1𝑚𝑚∑ 𝑆𝑆𝑖𝑖− 𝑥𝑥𝑖𝑖0�𝑚𝑚𝑖𝑖=1

1 +
1𝑆𝑆1 + 𝑆𝑆2 �∑ 𝑆𝑆𝑟𝑟𝑔𝑔 𝑦𝑦𝑟𝑟0𝑔𝑔�𝑆𝑆1𝑟𝑟=1 + ∑ 𝑆𝑆𝑟𝑟𝑏𝑏 𝑦𝑦𝑟𝑟0𝑏𝑏�𝑆𝑆2𝑟𝑟=1 �,  

𝑠𝑠. 𝑡𝑡.⎩⎪⎨
⎪⎧ 𝑥𝑥0 = 𝑋𝑋𝑋𝑋 + 𝑆𝑆−𝑦𝑦0𝑔𝑔 = 𝑌𝑌𝑔𝑔𝑋𝑋 − 𝑆𝑆𝑔𝑔𝑦𝑦0𝑏𝑏 = 𝑌𝑌𝑏𝑏𝑋𝑋 − 𝑆𝑆𝑏𝑏𝑆𝑆− ≥ 0, 𝑆𝑆𝑔𝑔 ≥ 0, 𝑆𝑆𝑏𝑏 ≥ 0,𝑋𝑋 ≥ 0

 

(5) 

𝑆𝑆 = (𝑆𝑆−, 𝑆𝑆𝑔𝑔, 𝑆𝑆𝑏𝑏)  expresses the relaxation of the input, desirable output, and 229 

undesirable output. The objective function value of ρ  is the efficiency of the 230 

decision–making unit and its range is 0~1. If and only if ρ=1, namely 𝑆𝑆−=𝑆𝑆𝑔𝑔=𝑆𝑆𝑏𝑏=0, 231 

is the given decision–making unit (𝑥𝑥0 , 𝑦𝑦0𝑔𝑔 , 𝑦𝑦0𝑏𝑏 ) effective. If 0 ≤ρ < 1 , the 232 

decision–making unit is inefficient, and the input and output need to be improved. The 233 

above model is nonlinear, and can be transformed into a linear model: 234 

 

 
τ = min𝑡𝑡 − 1𝑚𝑚�𝑆𝑆𝑖𝑖−𝑥𝑥𝑖𝑖0𝑚𝑚

𝑖𝑖=1 , s. t.

⎩⎪⎪
⎨⎪
⎪⎧ 1 = 𝑡𝑡 +

1𝑆𝑆1 + 𝑆𝑆2 (�𝑆𝑆𝑟𝑟𝑔𝑔𝑦𝑦𝑟𝑟0𝑔𝑔 +�𝑆𝑆𝑟𝑟𝑏𝑏𝑦𝑦𝑟𝑟0𝑏𝑏𝑆𝑆2
𝑟𝑟=1

𝑆𝑆1
𝑟𝑟=1 )𝑥𝑥0𝑡𝑡 = 𝑋𝑋𝑋𝑋 + 𝑆𝑆−𝑦𝑦0𝑔𝑔𝑡𝑡 = 𝑌𝑌𝑔𝑔𝑋𝑋 − 𝑆𝑆𝑔𝑔𝑦𝑦0𝑏𝑏𝑡𝑡 = 𝑌𝑌𝑏𝑏𝑋𝑋 − 𝑆𝑆𝑏𝑏𝑆𝑆− ≥ 0, 𝑆𝑆𝑔𝑔 ≥ 0, 𝑆𝑆𝑏𝑏 ≥ 0,𝑋𝑋 ≥ 0, 𝑡𝑡 > 0

 (6) 

To ensure reasonable results of the evaluation, we referred to research by Tone 235 

(2001) and used the super efficiency SBM model. It is as follows: 236 



 

 

𝜌𝜌∗ = min

1𝑚𝑚∑ 𝑥𝑥𝚤𝚤�𝑥𝑥𝑖𝑖0𝑚𝑚𝑖𝑖=1
1𝑆𝑆1 + 𝑆𝑆2 �∑ 𝑦𝑦�𝑟𝑟𝑔𝑔 𝑦𝑦𝑟𝑟0𝑔𝑔�𝑆𝑆1𝑟𝑟=1 + ∑ 𝑦𝑦�𝑟𝑟𝑏𝑏 𝑦𝑦𝑟𝑟0𝑏𝑏�𝑆𝑆2𝑟𝑟=1 �,  

𝑠𝑠. 𝑡𝑡.
⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ 𝑥̅𝑥 ≥ � 𝑋𝑋𝑗𝑗𝑥𝑥𝑗𝑗𝑛𝑛

𝑗𝑗=1,≠𝑘𝑘𝑦𝑦�𝑔𝑔 ≤ � 𝑋𝑋𝑗𝑗𝑦𝑦𝑗𝑗𝑔𝑔𝑛𝑛
𝑗𝑗=1,≠𝑘𝑘𝑦𝑦�𝑏𝑏 ≥ � 𝑋𝑋𝑗𝑗𝑦𝑦𝑗𝑗𝑏𝑏𝑛𝑛
𝑗𝑗=1,≠𝑘𝑘𝑥̅𝑥 ≥ 𝑥𝑥0,𝑦𝑦�𝑔𝑔 ≤ 𝑦𝑦0𝑔𝑔,𝑦𝑦�𝑏𝑏 ≥ 𝑦𝑦0𝑏𝑏,𝑦𝑦�𝑔𝑔 ≥ 0,𝑋𝑋 ≥ 0 

 

(7) 

The objective function value of 𝜌𝜌∗ expresses the efficiency of the decision–making 237 

unit, and the definitions of the other variables are the same as in Eq. (6). The above 238 

models are based on the assumption of a constant scale.  239 

3.2.2 Spatial autocorrelation 240 

The global Moran’s index (Moran’s I) was used to test the global spatial 241 

autocorrelation of atmospheric environmental efficiency. If Moran’s I is greater than 0, 242 

the research object is positively spatially autocorrelated, and the larger the value is, 243 

the stronger is the spatial agglomeration of the atmospheric environmental efficiency 244 

between cities. If Moran’s I is less than 0, the research object is negatively spatially 245 

autocorrelated, and smaller value indicates a stronger spatial dispersion of the 246 

atmospheric environmental efficiency between cities. The formula for the global 247 

Moran’s I is as follows: 248 

 𝐼𝐼 =
∑ ∑ 𝑊𝑊𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑥𝑥𝑗𝑗 − 𝑥̅𝑥)𝑛𝑛𝑗𝑗=1𝑛𝑛𝑖𝑖=1 𝑆𝑆2∑ ∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝑛𝑛𝑗𝑗=1𝑛𝑛𝑖𝑖=1  (8) 

 249 

 𝑆𝑆 =
1𝑛𝑛�(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1  (9) 

n expresses the number of cities, xi and yj  are the atmospheric environmental 250 

efficiency of cities i and j, respectively, 𝑥̅𝑥  expresses the average value of the 251 

atmospheric environmental efficiency of all cities, and Wij expresses the spatial 252 

weight matrix of cities i and j. If there is a public boundary between cities, then Wij = 253 

1; if not, then Wij = 0. To test the significance of the global Moran’s I, the 254 



standardized statistic of Moran’s I is defined as follows: 255 

 𝑍𝑍(𝐼𝐼) =
[1− 𝐸𝐸(𝐼𝐼)]�𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼)  (10) 

Z(I) can measure the significance of the global Moran’s I, E(I) expresses the 256 

mathematical expectation of I, and Var(I) expresses its variance. 257 

The local Moran’s I of atmospheric environmental efficiency was tested using 258 

local spatial autocorrelation, and is defined as follows: 259 

 𝐼𝐼𝑖𝑖 =
∑ ∑ 𝑊𝑊𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑥𝑥𝑗𝑗 − 𝑥̅𝑥)𝑛𝑛𝑗𝑗=1𝑛𝑛𝑖𝑖=1 𝑆𝑆2  (11) 

    The significance of the local Moran’s I was tested using Z(I), and Eq. (10) was 260 

used to calculate it. Cities whose significance reached a certain threshold (p=0.05) 261 

were divided into four types. If Moran’s I was significantly positive and Z(I) >0, the 262 

city was called a “high–high”-type city, and this indicated that the atmospheric 263 

environmental efficiency of this city and contiguous cities was high. This type can be 264 

called a “hot spot.” If Moran’s I was significantly positive and Z(I) <0, the given city 265 

was termed a “low–low”-type city, and this indicated that the atmospheric 266 

environmental efficiency of this and contiguous cities was low; this type can be 267 

termed a “cold spot.” If Moran’s I was significantly negative and Z(I) >0, the given 268 

city was termed a “high–low” city, which indicated that cities with high atmospheric 269 

environmental efficiency were surrounded by those with low efficiency. If Moran’s I 270 

was significantly negative and Z(I) <0, the city was termed a “low–high” city, and this 271 

indicated that cities with low atmospheric environmental efficiency were surrounded 272 

by those with high efficiency. 273 

3.2.3 Geodetector 274 

    The Geodetector is a statistical method to explore the spatial heterogeneity of a 275 

research object and reveal its factors influencing it. This method makes no assumption 276 

of linearity, but has an elegant form and a clear physical meaning (Wang et al., 2010). 277 

The core idea of the Geodetector method is as follows: Suppose the study region is 278 

divided into several sub–regions. If the sum of the variance of the sub–region is 279 

smaller than the total variance of the region, some spatial differentiation exists. If the 280 

spatial distribution of the two variables tends to be consistent, there is a statistical 281 



correlation between them (Wang and Xu, 2010). The statistic q can be used to 282 

measure the spatial differentiation, explore explanatory factors, and analyze the 283 

interaction between variables. It has been widely used to examine factors influencing 284 

the atmospheric environment (Zhou et al., 2019; Huang et al., 2020). The factors 285 

influencing atmospheric environmental efficiency were measured using this method. 286 

The model can be described as follows: 287 

 𝑃𝑃𝐷𝐷,𝐻𝐻 = 1 − 1𝑛𝑛𝜎𝜎𝐻𝐻2�𝑛𝑛𝐷𝐷,𝑖𝑖𝜎𝜎 2𝐻𝐻𝐷𝐷,𝐽𝐽
𝑛𝑛
𝑖𝑖=1  (12) 

𝑃𝑃𝐷𝐷,𝐻𝐻 expresses the explanatory power of the factors influencing urban atmospheric 288 

environmental efficiency, D is the factor influencing atmospheric environmental 289 

efficiency, n and 𝜎𝜎2  are number and variance of the samples, respectively, m 290 

expresses the number of categories of a given influential factor, and 𝑛𝑛𝐷𝐷,𝑖𝑖 expresses 291 

the number of indices D in sample i. The range of values of 𝑃𝑃𝐷𝐷,𝐻𝐻 is 0~1; the larger 292 

the value is, the stronger the explanatory power of the factor influencing atmospheric 293 

environmental efficiency is.  294 

4 Results 295 

4.1 Spatiotemporal evolution of urban atmospheric environmental efficiency 296 

The results of urban atmospheric environmental efficiency between 2001 and 297 

2016 are mapped in Fig. 1. Of the 267 cities studied, the atmospheric environmental 298 

efficiency of 217 showed a trend of gradual improvement, accounting for 81% of the 299 

total. The atmospheric environmental efficiency of 50 cities showed a gradual 300 

downward trend, and these are Shenyang, Dalian, Anshan, Changchun, Harbin, Jixi, 301 

Shuangyashan, Heihe, Shanghai, Wuxi, Hangzhou, Ningbo, Wenzhou, Taizhou (in 302 

Zhejiang province), Fuyang, Xuancheng, Chifeng, Chengde, Jincheng, Fuzhou, 303 

Xiamen, Ningde, Nanchang, Pingxiang, Ganzhou, Jinan, Zibo, Weifang, Binzhou, 304 

Jingmen, Xiaogan, Suizhou, Changsha, Yueyang, Jiangmen, Zhanjiang, Dongguan, 305 

Jieyang, Hezhou, Guangan, Bazhong, Anshun, Yuxi, Zhaotong, Xi’an, Xianyang, 306 

Pingliang, Jiuquan, Urumqi, and Karamay. Interestingly, both economically 307 

developed and underdeveloped cities compose this type. Fuzhou (in Jiangxi province), 308 

Suihua, Karamay, Dongguan, Dongguan, Dongguan, Ordos, Meizhou (in Guangdong 309 



province), Yichang, Dongguan, Ordos, Ordos, Tongliao, Baotou, and Daqing had the 310 

highest atmospheric environmental efficiency from 2001–2016, in decreasing order of 311 

efficiency. Lvliang, Lvliang, Jiayuguan, Jiaozuo, Jiaozuo, Jincheng, Jiaozuo, Jiaozuo, 312 

Datong, Jiaozuo, Jiaozuo, Heihe, Heihe, Heihe, Heihe, and Heihe had the lowest 313 

atmospheric environmental efficiency from 2001–2016. Fig. 2 shows the trend of 314 

evolution of the average value of urban atmospheric environmental efficiency in the 315 

entire country and the four regions. The average urban atmospheric environmental 316 

efficiency in China showed a “wavy” upward trend, with peaks in 2006 and 2010. A 317 

comparison of the values of the four regions shows that the urban atmospheric 318 

environmental efficiency in Eastern China was the highest and that in Western China 319 

was the lowest.  320 

321 

322 

323 

 324 

Fig. 1. The results of urban atmospheric environmental efficiency between 2001 and 2016 325 



 326 

Fig. 2. The trend of evolution of the average value of urban atmospheric environmental efficiency in China and its 327 

four regions 328 

4.2 Spatial autocorrelation of urban atmospheric environmental efficiency 329 

4.2.1 Global spatial autocorrelation 330 

The global spatial autocorrelation of urban atmospheric environmental efficiency 331 

between 2001 and 2016 was tested using ArcGIS 10.2, and the results are shown in 332 

Table 2. All values of the global Moran’s I were positive, and passed the 1% 333 

significance test. This explains the similar characteristics of spatial agglomeration of 334 

urban atmospheric environmental efficiency in China. The global Moran’s I exhibited 335 

a trend of first rising and then decreasing, where the point of inflection appeared in 336 

2007.  337 

Table 2 Results of global spatial autocorrelation of urban atmospheric environmental efficiency between 2001 and 338 

2016 339 

Year Moran’s I Z P value 

2001 0.129604  5.456604  0.000000  

2002 0.213305  8.850678  0.000000  

2003 0.231225  9.595016  0.000000  

2004 0.224345  9.407326  0.000000  

2005 0.208459  8.664341  0.000000  

2006 0.213767  8.870790  0.000000  

2007 0.245834  10.212385  0.000000  

2008 0.222931  9.293746  0.000000  

2009 0.204906  8.551084  0.000000  

2010 0.191744  7.982884  0.000000  

2011 0.206783  8.604095  0.000000  

2012 0.186318  7.947985  0.000000  



2013 0.159727  6.712538  0.000000  

2014 0.127890  5.395022  0.000000  

2015 0.154033  6.470255  0.000000  

2016 0.135438  5.705741  0.000000  

4.2.2 Local spatial autocorrelation 340 

The results of the local spatial autocorrelation of urban atmospheric 341 

environmental efficiency between 2001 and 2016 are shown in Fig. 3. The given 342 

distribution can be divided into four types: that is, high–high, low–low, high–low, and 343 

low–high. The high–high type featured the situation where the atmospheric 344 

environmental efficiency in a particular city and adjacent cities were high. This type 345 

was located in the Yangtze River Delta urban agglomeration, Pearl River Delta urban 346 

agglomeration, Harbin Changchun urban agglomeration, Central Yunnan urban 347 

agglomeration, and Hohhot Baotou Erdos Yulin urban agglomeration. The low–low 348 

type featured the situation where the atmospheric environmental efficiency in a 349 

particular city and the adjacent cities were low. This type was widely distributed in 350 

Shanxi, Hebei, Henan, and Gansu province. The high–low type represented a situation 351 

where the atmospheric environmental efficiency in one city was significantly higher 352 

than that in adjacent cities, and the spatial pattern was high in the middle and low in 353 

the peripheries. The low–high type depicted a scenarios where the atmospheric 354 

environmental efficiency in a particular city was significantly lower than that of 355 

adjacent cities, and the spatial pattern was low in the middle and high in the 356 

peripheries. The numbers of cities of high–high type and low–low type were 357 

significant greater than those of the other two types. 358 

359 

360 



361 

 362 

Fig. 3. The results of local spatial autocorrelation of urban atmospheric environmental efficiency between 2001 363 

and 2016 364 

4.3 Factors influencing urban atmospheric environmental efficiency 365 

    Shao et al. (2019), Lin and Tan (2019), and Chen and Chen (2018)’s work was used as 366 

reference to analyze the effects of population density, urbanization, industrialization, science 367 

and technology, opening to the world, social welfare, and environmental regulation on urban 368 

atmospheric environmental efficiency. Population density reports the effect of the effect of 369 

population agglomeration on urban atmospheric environmental efficiency. Urbanization is 370 

reflected using land urbanization to distinguish it from population density, and expressed 371 

using the ratio of land for urban construction to all land in municipal areas. Industrialization is 372 

expressed using the added value of the secondary industry. Science and technology is 373 

expressed using the ratio of expenditure of science and technology to total expenditure, 374 

opening to the world is expressed using the amount of foreign capital utilized, social welfare 375 

is expressed using the average wage of employees, and environmental regulation is expressed 376 

using the comprehensive rate of utilization of industrial solid waste. The results of the 377 

geographical detection of urban atmospheric environmental efficiency between 2001 and 378 

2016 are shown in Table 3.  379 

Table 3 Results of geographical detection for urban atmospheric environmental efficiency between 2001 and 2016 380 

Year Population 

density 

Urbanization Industrialization Science 

and 

technology 

Opening 

to the 

world 

Social 

welfare 

Environmental 

regulation 

2001 0.1246 0.0111 0.1143 0.2630 0.0033 0.0028 0.0050 

2002 0.1341 0.0188 0.1398** 0.2762 0.0029 0.0023 0.0072 

2003 0.1182 0.0404 0.1553** 0.2560 0.0029 0.0023 0.0078 

2004 0.1182 0.0404 0.1425** 0.3042 0.0023 0.0025* 0.0078 

2005 0.1523 0.0466 0.1503** 0.3617 0.0050 0.0024** 0.0088 



2006 0.1522 0.0466 0.1236 0.3617 0.0040 0.0024 0.0088 

2007 0.1645 0.0346 0.1206 0.3426 0.0044 0.0021 0.0080 

2008 0.1834 0.0264 0.1318** 0.3511 0.0039 0.0029** 0.0070 

2009 0.1801 0.0313 0.1459** 0.3779 0.0048 0.0020** 0.0074 

2010 0.1326* 0.0555 0.1971 0.3998 0.0052 0.0015 0.0071 

2011 0.1572 0.0532 0.1918 0.4405 0.0033 0.0014 0.0080 

2012 0.1322 0.0508 0.2025 0.4676 0.0039 0.0014 0.0088 

2013 0.1502 0.0563 0.2268 0.4738 0.0033 0.0013 0.0088 

2014 0.1890 0.0470 0.2178 0.4715 0.0041 0.0019** 0.0089 

2015 0.1652 0.0456 0.2256 0.4884 0.0045 0.0010 0.0083 

2016 0.2446 0.0471 0.2598 0.4884 0.0048 0.0018 0.0081 

Note: *, and ** represent significance at levels of 10% and 5%, respectively; other values are significant at the 1% 381 

level. 382 

The intensities of contribution of different factors on urban atmospheric 383 

environmental efficiency show that population density, industrialization, and science 384 

and technology had clearly greater effects than the other factors, and exhibited a trend 385 

of rising. These, then, are the main factors influencing urban atmospheric 386 

environmental efficiency.  387 

The population density of most cities is on the rise in China, which means that 388 

the degree of population agglomeration is gradually increasing. The scale effect of 389 

population agglomeration on air pollution is greater than the agglomeration effect, and 390 

increasing population density is the fundamental reason for the decline in air quality 391 

(Shao et al., 2016; Wang 2015). On the one hand, the increase in urban population and 392 

increases in levels of consumption lead to an increase of pollutants in the environment; 393 

on the other, the production capacity increases to meet the basic living needs of the 394 

increasing population and economic production increases the emission of air 395 

pollutants. The increase in population density thus leads to an increase in air 396 

pollutants, which are an factor influencing urban atmospheric environmental 397 

efficiency. 398 

    After the Reform and Opening Up, China began to industrialize. In the 21st 399 

century, its industrialization process has continued to accelerate. However, 400 

industrialization boosts the rapid development of economy while creating the problem 401 

of resource consumption and environmental pollution. The main pollutant emissions 402 



in China are still the highest in the world, with industrial pollution emissions 403 

accounting for more than 70% of total national pollution. Cities are the main sources 404 

of industrial pollution (Li et al., 2019; Yang et al., 2020). The industrialization of 405 

some cities in China is characterized by high input, low output, and high pollution. 406 

Because of this, the government has begun emphasizing the quality of industrial 407 

development since 2013 to protect the ecological environment (Shi and Li, 2019). 408 

Industrialization with extensive features is an important factor affecting urban 409 

atmospheric environmental efficiency. 410 

Science and technology is an important indicator of comprehensive national 411 

strength. Science and technology has proven to be have dual effects on the 412 

environment. On the one hand, technological progress can improve the efficiency of 413 

utilization of resources and the environment to reduce emissions in the production 414 

process (Li et al., 2020). On the other hand, it may expand the scale of production and 415 

increase the emission of environmental pollutants (Shao et al., 2013). Given urban 416 

development in China, improving the level of science and technology can help cities 417 

reduce the cost of production, improve production efficiency, and encourage them to 418 

rely on new technologies to reduce air pollutant emissions. This will improve urban 419 

atmospheric environmental efficiency. 420 

5 Conclusions and policy recommendations 421 

5.1 Conclusions 422 

The results of this study show that the atmospheric environmental efficiency of 423 

most cities in China is increasing, the average value of urban atmospheric 424 

environmental efficiency in the country exhibits a wavy upward trend, and the 425 

average urban atmospheric environmental efficiency in Eastern China is the highest 426 

while that in Western China is the lowest.  427 

The spatial autocorrelation analysis of urban atmospheric environmental 428 

efficiency shows that it exhibits the characteristic of global spatial autocorrelation 429 

each year, whereas its local spatial autocorrelation can be divided into four types: that 430 

is, high–high, low–low, high–low, and low–high scenarios. The high–high and 431 

low–low scenarios are the main representatives of urban atmospheric environmental 432 



efficiency in terms of local spatial autocorrelation. The high–high type scenarios is 433 

concentrated in the Yangtze River Delta urban agglomeration, Pearl River Delta urban 434 

agglomeration, Harbin Changchun urban agglomeration, Central Yunnan urban 435 

agglomeration, and Hohhot Baotou Erdos Yulin urban agglomeration. The low–low 436 

type scenarios are located in Shanxi, Hebei, Henan, and Gansu province. 437 

    The geographical detection of urban atmospheric environmental efficiency 438 

showed that population density, industrialization, and science and technology are the 439 

main factors influencing urban atmospheric environmental efficiency. 440 

5.2 Policy recommendations 441 

    First, urban atmospheric environmental efficiency is the result of the 442 

comprehensive effects of economic growth and air pollution. To improve it, the 443 

government needs to change the mode of economic growth, from traditional extensive 444 

growth to intensive growth, and improve the rate of utilization of resources and 445 

energy while reducing the emission of pollutants. Second, the urban atmospheric 446 

environmental efficiency in different regions showed significant differences. Thus, all 447 

regions need to strengthen cooperation and exchange, eliminate fragmentation and 448 

local protectionism, and share energy–saving and emission reduction technologies. 449 

Third, in view of the effect of population density on urban atmospheric environmental 450 

efficiency, new urbanization and smart growth modes are necessary for cities. Chinese 451 

cities need to change their model of expansion, reasonably plan the population size 452 

and density, and carry out compact and intensive development. Fourth, the problem of 453 

air pollution caused by industrial growth is difficult to avoid in a short time, and the 454 

government needs to consider the industrial ecological modes and cleaner production 455 

modes from a long-term perspective. Sixth, the government needs to give full play to 456 

the role of technological progress, which requires the promotion of advanced air 457 

pollution prevention technology and equipment in practice. 458 
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