To identify miR156/SPL13-regulated genes contributing to drought tolerance, high throughput transcriptomic analysis was conducted on alfalfa plants with reduced expression of SPL13 (SPL13RNAi-5), compared to empty vector (EV) plants. On average, seven million exon-region library sizes were generated from each replicate (Fig. S1a,b). Uniformly distributed DEG (corrected p value of p<0.05 and an at least 2-fold changes) were observed across the eight chromosomes of the reference Medicago truncatula genome for each tissue type (Fig. 1a). Of the differentially expressed genes (DEG) derived from leaf, stem, and root tissues of drought-stressed SPL13RNAi and EV, more coverage was observed in leaf tissue followed by stem and root, respectively (Fig. 1a). The fold-changes from leaf tissues were greater towards increasing while stem and root tissues showed more decreased values in SPL13RNAi plants (Fig. 1a). Tissue-specific gene expression patterns were determined using total mRNA obtained from leaf, stem, and root tissues of these alfalfa genotypes (Fig. 1b). The major difference for the changes in transcript abundance is contributed by tissue type as explained by 63.7% of the variance in the Principal Component Analysis (PCA) (Fig. 1b).
Genotype–specific transcript response of alfalfa to drought stress
Previous reports showed that the miR156/SPL13 module regulates physiological, metabolic and phenotypic adjustments in alfalfa under drought (Arshad et al., 2017; Feyissa et al., 2019). To understand SPL13-driven drought stress tolerance strategy, the global transcriptomic profile of leaf, stem, and root tissues of RNAi-silenced SPL13 and EV plants were investigated under drought stress. More than 5900, 2100, and 1500 DEG were found in leaf, stem, and root tissues, respectively (Fig. 2a). Of the DEG, 74 were commonly increased in SPL13RNAi plants regardless of tissue source, while 154 transcripts were commonly decreased (Fig. 2a). A list of the DEG is available in the supplementary file Table S1. Among the commonly increased 74 genes, the highest fold-change corresponds to vacuolar ion transporter-like protein (Medtr2g008110) followed by gibberellin-regulated family protein (Medtr6g007897), fasciclin-like arabinogalactan protein (FLAP) (Medtr5g098420), proline dehydrogenase (PDH) (Medtr7g020820), Pmr5/Cas1p GDSL/SGNH-like acyl-esterase family protein (Medtr4g079700), LRR receptor-like kinase (Medtr5g090100), and abscisic acid receptor (Medtr7g070050) (Table S1). Contrariwise, ABC transporter family protein (Medtr2g095440), plasma membrane H+ ATPase (Medtr3g108800), and PLAT-plant-stress protein (Medtr3g087490) were among the commonly reduced 154 genes in SPL13RANi plants under drought, irrespective of tissue source (Table S1).
To understand the drought-responsive transcript plasticity reflected by genotype, transcripts of drought-stressed and non-stressed tissues of SPL13RNAi and EV plants were analyzed. It was determined that SPL13RNAi had 998, 1195, and 587 DEG, whereas a considerably higher number (an average 4.5 fold) of DEG were observed in EV plants with 5521, 4426, and 2607 DEG in leaf, stem and root tissues, respectively (Fig. 2b,c; Table S2, S3).
Leaf-specific transcript profile of alfalfa plants under drought
To understand the gene co-expression pattern upon drought stress across tissues and genotypes, exon read-counts from both genotypes and all tissues were subjected to weighted gene co-expression network analysis (WGCNA) (Fig. S2c) followed by principal component analysis (PCA) (Fig. 1). Transcript profiles from leaf, stem, and root tissues of SPL13RNAi and EV responded to drought in a tissue-specific manner; presenting different clusters based on tissue type (Fig. 1). Of the 5908 DEG present between drought-stressed SPL13RNAi and EV leaf tissues, 47% of the genes were significantly increased and were leaf-specific in SPL13RNAi plants (Fig. 2a). On the other hand, considering tissue plasticity between well-watered and drought-stressed leaf tissues, 38% (of the 998) of DEG were increased in SPL13RNAi leaves (Fig. 2b) while 37% (of 5521) of DEG were increased in EV leaves (Fig. 2c). Moreover, 49% (494 of 998) of leaf-specific DEG were decreased in SPL13RNAi leaf tissues while 33% (1827 of 5521) were decreased uniquely in EV leaves (Fig. 2b,c). GO-terms of the DEG were analyzed and categorized into molecular function, biological process, and cellular components to understand the role of DEG between leaf tissues of drought-stressed SPL13RNAi and EV plants. GO-term analysis from leaf tissues showed 85% corresponding to molecular function followed by 10% and 5% to biological process and cellular components, respectively (Fig. 2d). Graphical representation of the components of GO-term analysis is provided in supplementary file Fig. S3. The top three highly represented leaf-derived GO-terms for the molecular function category correspond to transcription activity (phosphorelay response regulator activity, sequence-specific DNA binding transcription factor activity, and transcription cofactor activity) (Table S4.1). Likewise, the most highly represented three biological processes correspond to telomere maintenance, translation and alcohol metabolic process in addition to glutamine catabolic process and porphyrin-containing compound biosynthetic process (includes chlorophyll biosynthesis) (Table S4.1).
The differentially regulated genes were mapped to the M. truncatula genome using MapMan pathway analysis tool to understand their functional associations. Accordingly, leaf-specific DEG between drought-stressed SPL13RNAi and EV showed that various metabolic pathways were significantly affected, including carbohydrate metabolism, photosynthesis (mainly light reaction), and primary metabolism-related genes (Fig. 3a). Most importantly, photosynthesis-associated transcripts were highly increased in SPL13RNAi plants (Fig. 3a). Further investigation of transcripts associated with photosynthesis revealed that light-dependent reaction centers, namely of photosystem I and photosystem II, were expressed higher in SPL13RNAi (Fig. 3b). Unlike the light-dependent reaction centers, the Calvin cycle (Fig. 3c) and photorespiration-associated transcripts (Fig. 3d) were either slightly increased or not altered. Specifically, the carboxylation- and photorespiration-associated transcript of Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) was slightly increased in SPL13RNAi plants under drought stress (Fig. 3c,d).
Stem-specific transcript changes in alfalfa plants under drought
Expression levels of 27% of the 2114 DEG between drought-stressed stem tissues of SPL13RNAi and EV plants were increased exclusively in stems of SPL13RNAi plants (Fig. 2a). On the other hand, genotype- and stem-specific drought stress-responsive transcript plasticity revealed 39% of the 1195 DEGs in SPL13RNAi plants were increased while EV plants showed a 25% increase out of 4426 DEGs (Fig. 2b,c). Comparable to DEG in leaf tissues, the majority (83%) of the DEG in stem are associated with molecular functions followed by biological processes (12%) and cellular components (5%), despite DEG profile composition differences between leaves and stems (Fig. 2e; Fig. S4). The most represented three molecular functions which are differentially affected between SPL13RNAi and EV stem tissues are acyl-CoA dehydrogenase activity, ubiquinol-cytochrome-c reductase activity, and hydroxymethylglutaryl-CoA reductase (NADPH) activity (Table S4.2). On the other hand, the highly enriched categories of the affected biological processes include ATP catabolic process, response to stress, defense response, intercellular signal transduction and response to desiccation (Table S4.2).
Furthermore, to understand the association of DEG of stem with metabolic pathways, the DEG were subjected to MapMan-based pathway analysis (Fig. 4a). DEG of stem tissues corresponded mainly with increased flavonoid biosynthesis, carbohydrate metabolism and response to desiccation in SPL13RNAi plants (Fig. 4a, Table S1). On the other hand, DEG associated with photosynthesis were decreased significantly in SPL13RNAi plants (Fig. 4a). Transcriptomic analysis of DEG obtained from stem tissues combined with MapMan-based pathway analysis revealed an activation of the phenylpropanoid pathway in SPL13RNAi plants under drought stress (Fig. 4b).
Root-specific transcript profile of alfalfa plants under drought
A total of 1543 DEG were detected between roots of drought-stressed SPL13RNAi and EV plants, with 24% and 28% of them increased and decreased, respectively, exclusively in the roots (Fig. 2a). Further analysis of the plasticity between well watered and drought-stressed root samples showed 52% of 587 DEG in SPL13RNAi roots were upregulated while 24% of 2607 DEG were increased only in EV roots (Fig. 2b,c). Moreover, GO-term analysis of the root-specific DEG showed a similar proportion of components to that of stem and leaf tissues where the majority (82%) of transcripts belong to molecular function followed by biological process (13%) and cellular components (5 %), but with a varied profile composition (Fig. 2f; Fig. S4). The top highly represented biological processes encompass ATP catabolic process, response to stress, defense response, intercellular signal transduction, phosphorelay signal transduction system, metabolic process, metal ion transport and transmembrane transport (Table S4.3). On the other hand, the major representation from molecular functions are attributed to phosphorelay response regulator activity, sequence-specific DNA binding transcription factor activity, catalytic activity, GTPase activity, secondary active sulfate transmembrane transporter activity (Table S4.3). Moreover, to further understand the DEG association, the DEG were subjected to MapMan-based pathway analysis. We found that metal ion transport, carbohydrate and primary metabolism were significantly and differentially affected between SPL13RNAi and EV plants in response to drought (Fig. 5). Moreover, cell wall and lipid biosynthesis were increased in roots of SPL13RNAi plants as compared to EV.
Identification of SPL13 interacting proteins in alfalfa
IPMS was used to identify candidate proteins that interact with SPL13 in alfalfa under drought stress. In this experiment, alfalfa plants overexpressing SPL13 tagged with a green fluorescent protein, 35S::SPL13-GFP (Gao et al., 2018) and wild-type plants grown under control and drought stress conditions were used. Isolation of SPL13-interacting proteins followed by Coomasie staining showed the presence of unique protein bands in 35S::SPL13-GFP plants that were lacking in wild-type (Fig. 6a). There were some prominent and many faint bands. Therefore to identify all the proteins present, a FASP proteomics method was employed on the total IP eluent. Subsequently, the precipitated proteins were digested with trypsin and identified by mass spectrometry. To account for the lack of a complete M. sativa proteome database, a combined use of contig database and partial Uniprot database identified unique candidate proteins that would have been missed by the M. truncatula database alone. We were able to identify candidate SPL13-interacting proteins involved in the photosynthesis process, specialized metabolite biosynthesis, ROS scavenging, and abiotic stress tolerance in addition to normal cellular activity-involved peptides (Table1; Table S6).
SPL13 interacts with photosynthesis- and phenylpropanoid pathway -related proteins
The identification of SPL13-interacting proteins indicated proteins involved in photosynthesis are among the top candidates. For example, there were multiple occurrences of both small and large chains of the ribulose bisphosphate carboxylase (Rubisco), photosynthesis I p700 chlorophyll a apoprotein A2, and phytochrome A (Table1; Table S6).
A previous report indicated a direct binding of SPL13 to DFR promoter (Feyissa et al., 2019) to enhance anthocyanin biosynthesis. Using the current IPMS analysis, we were able to identify DFR and other candidate proteins interacting with SPL13, such as phenylalanine ammonia-lyase1(PAL1) which catalyses the first step in the phenylpropanoid pathway by converting phenylalanine to cinnamate (Nuñez-Palenius and Ochoa-Alejo, 2005). Other candidate peptides interacting with SPL13 from this pathway are chalcone synthase1, 2 and 4 (CHS1, CHS2, CHS4), which catalyzes the specialization from the general phenylpropanoid pathway into flavonoids converting 4-coumaroyl-CoA and malonyl-CoA (Dao et al., 2011). Other specialized metabolite biosynthesis mediating proteins such as cafeic acid-3-o-methyltransferase (COMT1) and isoflavone reductase (IFR) were also found to interact with SPL13 (Table1).
SPL13 interacts with proteins involved in stress signal transduction and resilience
Perception of environmental changes followed by signal transduction are a prerequisite for orchestrating the necessary measures to alleviate the stress effects through various kinases. In our study, Glycogen synthase kinase-3 and Mitogen-activated protein kinase homologs were detected in 35S::SPL13-GFP plants under drought stress (Table1). Moreover, N+/H+ antiporter, which is involved in ion balance to mediate stress tolerance and cellular activity (Xu et al., 2010), was also detected by IPMS analysis as an interacting partner of SPL13 under drought stress (Table S6).