[1] Brydson JA (1993) Plastic Material. 7th ed, Elsevier Ltd, 7th ed: pp. 635–667. https://doi.org/101016/B978-075064132-6/50064-4.
[2] Asim M, Saba N, Jawaid M, Nasir M, Pervaiz M., Alothman OY (2017) A review on Phenolic resin and its Composites. Curr Anal Chem 13 https://doi.org/10.2174/1573411013666171003154410.
[3] Asyadi F, Jawaid M, Hassan A, Wahit MU (2013) Mechanical Properties of Mica-Filled Polycarbonate/Poly(Acrylonitrile-Butadiene-Styrene) Composites. Polym Plast Technol Eng 52:727–736. https://doi.org/10.1080/03602559.2012.762672.
[4] Frollini E, Castellan (2012) A Phenolic Resins and Composites. Wiley Encycl Compos 1–10. https://doi.org/10.1002/9781118097298.weoc167.
[5] Allen DJ, Ishida H (2001) Thermosets: phenolics, novolacs, and benzoxazine. Encycl. Mater. Sci. Technol. Second Ed. 9226–9229. https://doi.org/10.1016/B0-08-043152-6/01662-4.
[6] Choi GG, Oh SJ, Lee SJ, Kim JS (2015) Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresour. Technol. 178:99–107. https://doi.org/10.1016/j.biortech.2014.08.053.
[7] Sarika P.R., Nancarrow P, Khansaheb A, Ibrahim T (2020) Bio-based alternatives to phenol and formaldehyde for the production of resins. Polymers 12:1–24. https://doi.org/10.3390/polym12102237.
[8] Mouritz AP (2012) Polymers for aerospace structures, in: Introd to Aerosp Mater, Woodhead Publishing Limited,: pp. 268–302. https://doi.org/10.1533/9780857095152.268.
[9] Abdellaoui H, Raji M, Bouhfid R, el kacem Qaiss A (2019) Investigation of the deformation behavior of epoxy-based composite materials. in: M. Jawaid, M.T. Hameed Sultan, N. Saba (Eds.), Fail Anal Biocomposites, Fibre-Reinforced Compos. Hybrid Compos,: pp. 29–49. https://doi.org/10.1016/B978-0-08-102293-1.00002-4.
[10] Hodd K (1989) Epoxy resins. in: Compr Polym Sci Suppl, Elsevier,: pp. 667–699. https://doi.org/doi.org/10.1016/B978-0-08-096701-1.00178-6.
[11] Hua FJ, Hu CP (1999) Interpenetrating polymer networks of epoxy resin and urethane acrylate resin: 2. Morphology and mechanical property, Eur Polym J 36:27–33. https://doi.org/10.1016/S0014-3057(99)00027-0.
[12] Li J, Zhang J, Zhang S, Gao Q, Li J, Zhang W (2018) Alkali lignin depolymerization under eco-friendly and cost-effective NaOH/urea aqueous solution for fast curing bio-based phenolic resin. Ind Crops Prod 120:25–33. https://doi.org/10.1016/j.indcrop.2018.04.027.
[13] Benyahya S, Aouf C, Caillol S, Boutevi B, Pascault JP, Fulcrand H (2014) Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind Crops Prod 53:296–307. https://doi.org/10.1016/j.indcrop.2013.12.045.
[14] Cardona F, Aravinthan T, Fedrigo J, Moscou C (2010) Synthesis of phenolic bio-resins for advanced composites in civil engineering structures. In Proceedings of the Southern Region Engineering Conference (SREC 2010) (pp. 58-64). Engineers Australia.
[15] Ciesielski M, Burk B, Heinzmann C, Döring M (2017) Fire-retardant high-performance epoxy-based materials. Elsevier Ltd,. https://doi.org/10.1016/b978-0-08-100136-3.00002-9.
[16] Mahesh KPO, Alagar M, Ananda Kumar S (2003) Mechanical, thermal and morphological behavior of bismaleimide modified polyurethane-epoxy IPN matrices. Polym Adv Technol 14:137–146. https://doi.org/10.1002/pat.341.
[17] Unnikrishnan KP, Thachil ET (2006) Hybrid polymer networks of epoxy resin and substituted phenolic novolacs. Int J Polym Mater Polym Biomater 55:563–576. https://doi.org/10.1080/00914030500236833.
[18] Peng YL, Zeng L (2015) Study on the Phenolic - Epoxy Resin System. Adv Mater Res 1088:439–443. https://doi.org/10.4028/www.scientific.net/amr.1088.439.
[19] Parameswaranpillai J, Thomas S, Grohens Y (2015) Polymer Blends: State of the Art, New Challenges, and Opportunities, in: Charact. Polym. Blends Miscibility, Morphol. Interfaces,: pp. 1–6. https://doi.org/10.1002/9783527645602.ch01.
[20] Qin Y (2016) Applications of advanced technologies in the development of functional medical textile materials. in: Med. Text. Mater., Woodhead Publishing,: pp. 55–70. https://doi.org/doi.org/10.1016/B978-0-08-100618-4.00005-4.
[21] Niaounakis M (2015) Blending. in: Biopolym. Process. Prod., Elsevier,: pp. 117–185. https://doi.org/doi.org/10.1016/B978-0-323-26698-7.00003-9.
[22] Rohde BJ, Le KM, Krishnamoorti R, Robertson ML (2016) Thermoset Blends of an Epoxy Resin and Polydicyclopentadiene. Macromolecules. 49:8960–8970. https://doi.org/10.1021/acs.macromol.6b01649.
[23] Sultan SR, Salah NJ, Razak AAA (2008) Improve the Performance of Epoxy Resin and Poly (Vinyl Butyral) As an Aluminum Metal Adhesion. J Technique. 23(1):35-45.
[24] Hiremath V, Singh M, Kumar D (2014) Effect of Post Curing Temperature on Viscoelastic and Flexural Properties of Epoxy / Alumina Polymer Nanocomposites. Procedia Eng 97:479–487. https://doi.org/10.1016/j.proeng.2014.12.272.
[25] Zareanshahraki F, Jannesari A, Rastegar S (2020) Morphology , optical properties , and curing behavior of UV-curable acrylate-siloxane polymer blends. Polym Test 85: 106412. https://doi.org/10.1016/j.polymertesting.2020.106412.
[26] Motawie AM, Badr MM, Amer MS, Moustafa HY, Ali IM (2008) Some Coating Studies on Phenolic Epoxy / Poly(Vinyl Acetal) Resins. J Appl Sci Res 4:1043–1051.
[27] Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A (2021) Mechanical and Morphological Properties of Bio-Phenolic/Epoxy Polymer Blends. Molecules 26:773. https://doi.org/10.3390/molecules26040773.
[28] Lascano D, Quiles-Carrillo L, Torres-Giner S, Boronat T, Montanes N (2019) Optimization of the curing and post-curing conditions for the manufacturing of partially bio-based epoxy resins with improved toughness. Polymers,. 11(8):1354.
[29] Hsieh KH, Chiang YC, Chern YC, Chiu WY, Ma CCM (1991) Interpenetrating polymer networks of polyurethanes and epoxy resin, I. Mechanical behavior. Die Angew Makromol Chemie 193:89–98. https://doi.org/10.1002/apmc.1991.051930109.
[30] Supian ABM, Sapuan SM, Zuhri MYM, Zainudin ES, Ya HH, Hisham HN (2021) Effect of winding orientation on energy absorption and failure modes of filament wound kenaf/glass fibre reinforced epoxy hybrid composite tubes under intermediate-velocity impact (IVI) load. J Mater Res Technol 10:1–14. https://doi.org/10.1016/j.jmrt.2020.11.103.
[31] Viratyaporn W, Lehman RL, Joshi J (2007) Impact resistance of selected immiscible polymer blends. Annu Tech Conf - ANTEC, Conf Proc 3:1843–1847.
[32] Jin FL, Park SJ (2008) Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Mater Sci Eng A 478:402–405. https://doi.org/10.1016/j.msea.2007.05.053.
[33] Clifton S, Thimmappa BHS, Selvam R, Shivamurthy B (2020) Polymer nanocomposites for high-velocity impact applications-A review. Compos Commun 17:72–86. https://doi.org/10.1016/j.coco.2019.11.013.
[34] Wan J, Zhao J, Zhang X, Fan H, Zhang J, Hu D, Jin P, Wang DY (2020) Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances. Prog Polym Sci 108:101287. https://doi.org/10.1016/j.progpolymsci.2020.101287.
[35] Zhang J, Mi X, Chen S, Xu Z, Zhang D, Miao M, Wang J (2020) A bio-based hyperbranched flame retardant for epoxy resins. Chem Eng J 381:122719. https://doi.org/10.1016/j.cej.2019.122719.
[36] Zhang N, Zeng C, Wang L, Ren J (2013) Preparation and Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blend with Epoxy-Functional Styrene Acrylic Copolymer as Reactive Agent. J Polym Environ 21:286–292. https://doi.org/10.1007/s10924-012-0448-z.
[37] Ojijo V, Sinha Ray S, Sadiku R (2013) Toughening of biodegradable polylactide/poly(butylene succinate- co -adipate) blends via in situ reactive compatibilization. ACS Appl Mater Interfaces 5:4266–4276. https://doi.org/10.1021/am400482f.