This study found two clinical characteristics (i.e., age and CEA level) and two CT characteristics (i.e., pleural retraction sign and CT bronchus sign) as significant predictors of malignancy in patients with small SPNs. Notably, we developed a clinical-radiologic predictive model to estimate the pre-test patient-specific “risk” of malignant small SPNs with good predictive accuracy.
In most of the previous models, they usually included 6–7 predictive factors [15, 20–22]. However, our model only included 4 predictive factors. Compared to the previous models, the diameter of the nodule, spiculation, and malignant history were not associated with the malignant small SPNs.
The SPNs’ malignancy risk increased 1.1 times as the nodule diameter increased by 1 mm, according to She et al. [20]. However, the diameter of SPN might have a small impact on the differential diagnosis of small SPNs. Chen et al. [23] also did not find the malignancy of small SPNs was associated with the diameter. Since the risk of malignancy increases with larger SPNs, models for 20–30 mm SPNs can outperform those for 20 mm or fewer counterparts in terms of predicting it [23].
Spiculation is a common CT sign which indicates malignant SPN [15, 20–23]. However, previous studies did not analyze the detailed features of the spiculation. Some researchers found that both lung cancer and inflammatory pseudotumor could be presented with spiculation [24]. However, the morphology of the spiculation in lung cancer and inflammatory pseudotumor were different [24]. The lung cancers are usually presented with short spiculation, while the inflammatory pseudotumors are mostly presented with long spiculation [24]. However, the morphology of the spiculation was usually confirmed according to the doctor’s practical experience and there were no strict definitions of short and long spiculation. As a result, the presence or absence of spiculation was usually a binary parameter (present/absent), with no set threshold for distinguishing between these criteria. Previous malignant history is also an important factor of malignant SPNs, however, our study only had 6 patients with a malignant history. Therefore, malignant history was not found to be associated with malignant SPNs in our study.
Similar to other models [20–23], our model also included age, pleural retraction sign, CT bronchus sign, and CEA level as the predictors of malignant SPNs. Lung cancer onset before 30 years of age is extremely rare, according to Chen et al.'s [25] study in China; however, its incidence increases gradually between the ages of 30–75.
Pleural retraction sign also could be found in many predictive models [17, 19, 20, 23]. According to a previous report, 18 of the 29 cases of malignant nodules had pleural retraction sign, and the rest of the cases without pleural retraction sign had malignant nodules distant from the pleura [26]. According to Li et al. [26], the frequency of pleural retraction sign is 13.1% in benign nodules and 25.4% in malignant nodules. Furthermore, Cui et al. [27] found that diagnosing lung cancer with only pleural retraction sign is not specific, while pleural retraction sign paired with an associated notch has a specificity of 96% in diagnosing lung cancer, with a positive prediction rate of 97%.
The presence of air bronchus within SPN lesions is referred to as the CT bronchus sign. According to Ma et al. [28], the incidence of CT bronchus sign for adenocarcinoma is as high as 48.8%, while undifferentiated carcinoma, squamous carcinoma, and alveolar carcinoma are 28.6%, 20%, and 9.1% respectively.
Furthermore, serum tumor markers have been linked to cancer [29], and CEA has been an essential marker for various cancers [30]. Even though serum CEA levels were linked to age and smoking [30], multivariate analysis revealed serum CEA to be a significant factor instead of a confounding factor. CEA was also thought to be a key factor in distinguishing between malignant and benign SPNs by Li et al. [30].
When comparing our model to Wang et al. [21] and Swensen et al. [22] models, we found that the AUC was significantly larger in our model. Both Wang et al. [21] and Swensen et al. [22] included SPNs with a diameter ≤ of 30mm. These results indicated that most previous models might not be suited for the small SPNs. However, we only focused on the SPNs with a diameter ≤ of 20mm (small SPNs). Therefore, our model improved the diagnostic ability for the small SPNs.
This study has some limitations. Since this was a single-center retrospective study, the accuracy and reliability of our prediction model need to be validated in a multi-center prospective study before it can be used as a clinical tool for the prediction of small SPNs’ malignancy. Besides, many studies also utilized CT follow-up as a reference standard for benign SPNs [18, 22, 31]. However, we only included the SPNs with the pathological diagnoses. This performance decreased the number of benign SPNs and might influence the results of risk factors. However, the pathological results could guarantee the accuracy of the diagnoses of SPNs. Moreover, FDG-PET scans are often useful in the diagnosis of lung cancer, and they are now widely practiced in some developed countries. However, since FDG-PET is not accessible to all patients in China and we do not have complete data, thus our model's generalizability may be limited.