Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R.P., Wolters, P.J., Abate, A.R., et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20, 163-172.
Atabai, K., Jame, S., Azhar, N., Kuo, A., Lam, M., McKleroy, W., Dehart, G., Rahman, S., Xia, D.D., Melton, A.C., et al. (2009). Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J Clin Invest 119, 3713-3722.
Barkauskas, C.E., Cronce, M.J., Rackley, C.R., Bowie, E.J., Keene, D.R., Stripp, B.R., Randell, S.H., Noble, P.W., and Hogan, B.L. (2013). Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123, 3025-3036.
Baumgartner, K.B., Samet, J.M., Stidley, C.A., Colby, T.V., and Waldron, J.A. (1997). Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 155, 242-248.
Byrne, A.J., Maher, T.M., and Lloyd, C.M. (2016). Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends Mol Med 22, 303-316.
Court, A.C., Le-Gatt, A., Luz-Crawford, P., Parra, E., Aliaga-Tobar, V., Batiz, L.F., Contreras, R.A., Ortuzar, M.I., Kurte, M., Elizondo-Vega, R., et al. (2020). Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep 21, e48052.
Dancer, R.C., Wood, A.M., and Thickett, D.R. (2011). Metalloproteinases in idiopathic pulmonary fibrosis. Eur Respir J 38, 1461-1467.
Downey, G.P. (2011). Resolving the scar of pulmonary fibrosis. N Engl J Med 365, 1140-1141.
Galleu, A., Riffo-Vasquez, Y., Trento, C., Lomas, C., Dolcetti, L., Cheung, T.S., von Bonin, M., Barbieri, L., Halai, K., Ward, S., et al. (2017). Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 9.
Ghebremedhin, A., Salam, A.B., Adu-Addai, B., Noonan, S., Stratton, R., Ahmed, M.S.U., Khantwal, C., Martin, G.R., Lin, H., Andrews, C., et al. (2020). A Novel CD206 Targeting Peptide Inhibits Bleomycin Induced Pulmonary Fibrosis in Mice. bioRxiv.
Groom, J.R., and Luster, A.D. (2011). CXCR3 in T cell function. Exp Cell Res 317, 620-631.
Ji, R., Lee, C.M., Gonzales, L.W., Yang, Y., Aksoy, M.O., Wang, P., Brailoiu, E., Dun, N., Hurford, M.T., and Kelsen, S.G. (2008). Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A. Am J Physiol Lung Cell Mol Physiol 294, L1187-1196.
Ji, W.J., Ma, Y.Q., Zhou, X., Zhang, Y.D., Lu, R.Y., Sun, H.Y., Guo, Z.Z., Zhang, Z., Li, Y.M., and Wei, L.Q. (2014). Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J Immunol Methods 403, 7-16.
Jiang, D., Liang, J., Campanella, G.S., Guo, R., Yu, S., Xie, T., Liu, N., Jung, Y., Homer, R., Meltzer, E.B., et al. (2010). Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. J Clin Invest 120, 2049-2057.
Jiang, D., Liang, J., Hodge, J., Lu, B., Zhu, Z., Yu, S., Fan, J., Gao, Y., Yin, Z., Homer, R., et al. (2004). Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J Clin Invest 114, 291-299.
Jun, D., Garat, C., West, J., Thorn, N., Chow, K., Cleaver, T., Sullivan, T., Torchia, E.C., Childs, C., Shade, T., et al. (2011). The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells 29, 725-735.
Karin, N., and Razon, H. (2018). Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine 109, 24-28.
Ko, J.H., Kim, H.J., Jeong, H.J., Lee, H.J., and Oh, J.Y. (2020). Mesenchymal Stem and Stromal Cells Harness Macrophage-Derived Amphiregulin to Maintain Tissue Homeostasis. Cell Rep 30, 3806-3820 e3806.
Kopf, M., Schneider, C., and Nobs, S.P. (2015). The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16, 36-44.
Lee, C.M., He, C.H., Park, J.W., Lee, J.H., Kamle, S., Ma, B., Akosman, B., Cotez, R., Chen, E., Zhou, Y., et al. (2019). Chitinase 1 regulates pulmonary fibrosis by modulating TGF-beta/SMAD7 pathway via TGFBRAP1 and FOXO3. Life Sci Alliance 2.
Lee, S.H., Jang, A.S., Kim, Y.E., Cha, J.Y., Kim, T.H., Jung, S., Park, S.K., Lee, Y.K., Won, J.H., Kim, Y.H., et al. (2010). Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res 11, 16.
Li, W., Chen, W., Huang, S., Yao, G., Tang, X., and Sun, L. (2020). Mesenchymal stem cells prevent overwhelming inflammation and reduce infection severity via recruiting CXCR3(+) regulatory T cells. Clin Transl Immunology 9, e1181.
Liu, T., Ullenbruch, M., Young Choi, Y., Yu, H., Ding, L., Xaubet, A., Pereda, J., Feghali-Bostwick, C.A., Bitterman, P.B., Henke, C.A., et al. (2013). Telomerase and telomere length in pulmonary fibrosis. Am J Respir Cell Mol Biol 49, 260-268.
Mansouri, N., Willis, G.R., Fernandez-Gonzalez, A., Reis, M., Nassiri, S., Mitsialis, S.A., and Kourembanas, S. (2019). Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight 4.
Martinez, F.J., Collard, H.R., Pardo, A., Raghu, G., Richeldi, L., Selman, M., Swigris, J.J., Taniguchi, H., and Wells, A.U. (2017). Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 3, 17074.
Misharin, A.V., Morales-Nebreda, L., Mutlu, G.M., Budinger, G.R., and Perlman, H. (2013). Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 49, 503-510.
Moodley, Y., Atienza, D., Manuelpillai, U., Samuel, C.S., Tchongue, J., Ilancheran, S., Boyd, R., and Trounson, A. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175, 303-313.
Morrison, T.J., Jackson, M.V., Cunningham, E.K., Kissenpfennig, A., McAuley, D.F., O'Kane, C.M., and Krasnodembskaya, A.D. (2017). Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am J Respir Crit Care Med 196, 1275-1286.
Ono, M., Ohkouchi, S., Kanehira, M., Tode, N., Kobayashi, M., Ebina, M., Nukiwa, T., Irokawa, T., Ogawa, H., Akaike, T., et al. (2015). Mesenchymal stem cells correct inappropriate epithelial-mesenchyme relation in pulmonary fibrosis using stanniocalcin-1. Mol Ther 23, 549-560.
Ortiz, L.A., Gambelli, F., McBride, C., Gaupp, D., Baddoo, M., Kaminski, N., and Phinney, D.G. (2003). Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100, 8407-8411.
Sanchez-Guijo, F., Garcia-Arranz, M., Lopez-Parra, M., Monedero, P., Mata-Martinez, C., Santos, A., Sagredo, V., Alvarez-Avello, J.M., Guerrero, J.E., Perez-Calvo, C., et al. (2020). Adipose-derived mesenchymal stromal cells for the treatment of patients with severe SARS-CoV-2 pneumonia requiring mechanical ventilation. A proof of concept study. EClinicalMedicine 25, 100454.
Sheng, G., Chen, P., Wei, Y., Yue, H., Chu, J., Zhao, J., Wang, Y., Zhang, W., and Zhang, H.L. (2020). Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis. Chest 157, 1175-1187.
Sisson, T.H., Mendez, M., Choi, K., Subbotina, N., Courey, A., Cunningham, A., Dave, A., Engelhardt, J.F., Liu, X., White, E.S., et al. (2010). Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181, 254-263.
Strieter, R.M., Gomperts, B.N., and Keane, M.P. (2007). The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 117, 549-556.
Tager, A.M., Kradin, R.L., LaCamera, P., Bercury, S.D., Campanella, G.S., Leary, C.P., Polosukhin, V., Zhao, L.H., Sakamoto, H., Blackwell, T.S., et al. (2004). Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10. Am J Respir Cell Mol Biol 31, 395-404.
Tan, S.Y., and Krasnow, M.A. (2016). Developmental origin of lung macrophage diversity. Development 143, 1318-1327.
Wu, H., Yu, Y., Huang, H., Hu, Y., Fu, S., Wang, Z., Shi, M., Zhao, X., Yuan, J., Li, J., et al. (2020). Progressive Pulmonary Fibrosis Is Caused by Elevated Mechanical Tension on Alveolar Stem Cells. Cell 180, 107-121 e117.
Wynn, T.A., and Vannella, K.M. (2016). Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 44, 450-462.
Xie, T., Wang, Y., Deng, N., Huang, G., Taghavifar, F., Geng, Y., Liu, N., Kulur, V., Yao, C., Chen, P., et al. (2018). Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Rep 22, 3625-3640.
Yao, C., Guan, X., Carraro, G., Parimon, T., Liu, X., Huang, G., Mulay, A., Soukiasian, H.J., David, G., Weigt, S.S., et al. (2021). Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. Am J Respir Crit Care Med 203, 707-717.
Zhou, Y., Peng, H., Sun, H., Peng, X., Tang, C., Gan, Y., Chen, X., Mathur, A., Hu, B., Slade, M.D., et al. (2014). Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in Mammalian lung fibrosis. Sci Transl Med 6, 240ra276.