The preprocessing step in the script ensured that a dataset was clean, without missing or erroneous values, and proper data types for the relevant columns before analysis was done. This included calculating statistical measures like mean, median, and standard deviation of fitness values obtained from each algorithm, correlation analysis to establish whether the metrics relate to each other, and visualization of data to identify trends and patterns. Comparing the algorithms, Genetic Algorithm returned a median fitness of 33,249,800.0, a mean of 35,171,496.67, with a standard deviation of 9,091,699.79. Particle Swarm Optimization returned a median fitness of 33,131,900.0, with a mean fitness of 34,993,780.0 and standard deviation of 7,272,116.56. Biogeography-Based Optimization returned a median fitness of 34,710,250.0, with a mean of 34,763,750.0 and a standard deviation of 5,615,249.84. This comparison has looked at the consistency and performance of each algorithm based on these measures.
The Genetic Algorithm (GA) had median fitness of 33,249,800.0, mean fitness of 35,171,496.67, and relatively larger standard deviation—9,091,699.79, identifying not the worst mean fitness but the highest mean variability. The Particle Swarm Optimization algorithm had a median fitness of 33,131,900.0, a mean fitness of 34,993,780.0, and a standard deviation of 7,272,116.56, showing the lowest median fitness but relatively more consistent performance compared to GA. The BBO showed the best performance essentially: it had the highest median fitness of 34,710,250.0, mean fitness of 34,763,750.0, and the least standard deviation of 5,615,249.84, leading with regards to this in the most consistent and robust performance among algorithms. Detailed statistical results showed that in GA there have been notable highs and lows, accounting for its higher standard deviation; in general, PSO performed with a slightly lower median than GA; and BBO, compared with GA and PSO, performed well for various trials with less variability.As shown in Table 3.
Table 3
Performance Metrics of Optimization Algorithms
S. No. | Algorithm | Median Fitness | Mean Fitness | Std Fitness |
0 | GA | 33249800.0 | 35171496.666666664 | 9091699.790339293 |
1 | PSO | 33131900.0 | 34993780.0 | 7272116.561607081 |
2 | BBO | 34710250.0 | 34763750.0 | 5615249.839128561 |
3 | GA | 33249800.0 | 35171496.666667 | 9091699.790339 |
4 | PSO | 33131900.0 | 34993780.0 | 7272116.561607 |
5 | BBO | 34710250.0 | 34763750.0 | 5615249.839129 |
5.1 Detailed Fitness Values for GA, PSO, and BBO
GA_results = [ 46381600.0, 26088800.0, 33334500.0, 25934900.0, 26552200.0, 28909100.0, 36034700.0, 30131300.0, 39300300.0, 37724000.0, 27601700.0, 39233100.0, 33078500.0, 31384700.0, 27936200.0, 29811200.0, 36420700.0, 35669700.0, 39383900.0, 34419500.0, 25998600.0, 37273500.0, 30450100.0, 35167100.0, 35743200.0, 40052800.0, 35365800.0, 34600900.0, 29658500.0, 35483900.0 ]
PSO_results = [31999300.0, 27860600.0, 34259600.0, 26573000.0, 31293300.0, 28729000.0, 37655100.0, 34248900.0, 39785900.0, 36503700.0, 34439000.0, 36049600.0, 35168000.0, 34270100.0, 33358100.0, 34501900.0, 39027000.0, 35756700.0, 33350400.0, 35330400.0, 29771600.0, 36519000.0, 33978900.0, 38019500.0, 35832100.0, 33587500.0, 37462000.0, 36421500.0, 33406800.0, 34671200.0]
BBO_results = [ 32300900.0, 38773200.0, 34190000.0, 28753300.0, 36598600.0, 35240300.0, 34378400.0, 34459500.0, 35149500.0, 35959700.0, 36431800.0, 34278600.0, 38455600.0, 36897900.0, 32740900.0, 34589700.0, 35809100.0, 34258600.0, 37943900.0, 34487600.0, 32903100.0, 33778600.0, 36701400.0, 37560200.0, 33092400.0, 35781700.0, 35959300.0, 38737200.0, 36370400.0, 35363900.0]
Table 4. Result of benchmark Function
S. No.
|
Function
|
Algorithm
|
Median Fitness
|
Mean Fitness
|
Std Fitness
|
Mean Computation Time
|
0
|
F1
|
GA
|
-0.002173
|
-0.008845
|
0.010069
|
0.000148
|
1
|
F1
|
PSO
|
-0.002278
|
-0.006378
|
0.008998
|
0.000236
|
2
|
F1
|
BBO
|
-0.005956
|
-0.009196
|
0.006836
|
0.000014
|
3
|
F2
|
GA
|
-0.020778
|
-0.022469
|
0.015991
|
0.000056
|
4
|
F2
|
PSO
|
-0.006483
|
-0.008154
|
0.005790
|
0.000013
|
5
|
F2
|
BBO
|
-0.005695
|
-0.008042
|
0.006141
|
0.000013
|
6
|
F3
|
GA
|
-0.003473
|
-0.006188
|
0.004596
|
0.000079
|
7
|
F3
|
PSO
|
-0.006372
|
-0.006581
|
0.004261
|
0.000013
|
8
|
F3
|
BBO
|
-0.013037
|
-0.019261
|
0.020592
|
0.000012
|
9
|
F4
|
GA
|
-0.005394
|
-0.005719
|
0.002894
|
0.000114
|
10
|
F4
|
PSO
|
-0.002343
|
-0.004936
|
0.005810
|
0.000013
|
11
|
F4
|
BBO
|
-0.006465
|
-0.007840
|
0.005589
|
0.000014
|
12
|
F5
|
GA
|
-0.015439
|
-0.015344
|
0.012622
|
0.000126
|
13
|
F5
|
PSO
|
-0.005262
|
-0.006437
|
0.004484
|
0.000015
|
14
|
F5
|
BBO
|
-0.009776
|
-0.010036
|
0.001509
|
0.000084
|
15
|
F6
|
GA
|
-0.002777
|
-0.003340
|
0.002768
|
0.000194
|
16
|
F6
|
PSO
|
-0.009827
|
-0.017444
|
0.013295
|
0.000012
|
17
|
F6
|
BBO
|
-0.004822
|
-0.011416
|
0.014870
|
0.000012
|
18
|
F7
|
GA
|
-0.014675
|
-0.014192
|
0.008150
|
0.000322
|
19
|
F7
|
PSO
|
-0.011605
|
-0.011690
|
0.005948
|
0.000012
|
20
|
F7
|
BBO
|
-0.014557
|
-0.012679
|
0.006700
|
0.00015
|