1 Castaneda, O. & Baz, R. Multiple Myeloma Genomics - A Concise Review. Acta Med Acad 48, 57-67, doi:10.5644/ama2006-124.242 (2019).
2 Legarda, M. A., Cejalvo, M. J. & de la Rubia, J. Recent Advances in the Treatment of Patients with Multiple Myeloma. Cancers (Basel) 12, doi:10.3390/cancers12123576 (2020).
3 Chen, D., Yang, X., Liu, M., Zhang, Z. & Xing, E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther, doi:10.1038/s41417-020-00291-4 (2021).
4 Wang, S. et al. IL-17A Increases Multiple Myeloma Cell Viability by Positively Regulating Syk Expression. Transl Oncol 12, 1086-1091, doi:10.1016/j.tranon.2019.04.023 (2019).
5 Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103, 356-387, doi:10.1016/j.ejca.2018.07.005 (2018).
6 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J Clin 70, 7-30, doi:10.3322/caac.21590 (2020).
7 Riccomi, G., Fornaciari, G. & Giuffra, V. Multiple myeloma in paleopathology: A critical review. Int J Paleopathol 24, 201-212, doi:10.1016/j.ijpp.2018.12.001 (2019).
8 Michels, T. C. & Petersen, K. E. Multiple Myeloma: Diagnosis and Treatment. Am Fam Physician 95, 373-383 (2017).
9 Mateos, M. V. et al. Insights on Multiple Myeloma Treatment Strategies. Hemasphere 3, e163, doi:10.1097/hs9.0000000000000163 (2019).
10 Terragna, C. et al. The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD). Oncotarget 7, 9666-9679, doi:10.18632/oncotarget.5718 (2016).
11 Kasamatsu, T. et al. IL17A and IL23R gene polymorphisms affect the clinical features and prognosis of patients with multiple myeloma. Hematol Oncol 36, 196-201, doi:10.1002/hon.2469 (2018).
12 Roth, M., Obaidat, A. & Hagenbuch, B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165, 1260-1287, doi:10.1111/j.1476-5381.2011.01724.x (2012).
13 Hagenbuch, B. & Meier, P. J. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447, 653-665, doi:10.1007/s00424-003-1168-y (2004).
14 Thakkar, N., Lockhart, A. C. & Lee, W. Role of Organic Anion-Transporting Polypeptides (OATPs) in Cancer Therapy. Aaps j 17, 535-545, doi:10.1208/s12248-015-9740-x (2015).
15 Lee, H. H. & Ho, R. H. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br J Clin Pharmacol 83, 1176-1184, doi:10.1111/bcp.13207 (2017).
16 Hagenbuch, B. & Meier, P. J. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 1609, 1-18, doi:10.1016/s0005-2736(02)00633-8 (2003).
17 Zhou, F., Zhu, L., Wang, K. & Murray, M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 116, 21-36, doi:10.1016/j.addr.2016.06.004 (2017).
18 Lin, X. et al. Interaction of swine organic anion transporting polypeptide 1a2 with tetracycline, macrolide and β-lactam antibiotics. Toxicol Appl Pharmacol 379, 114649, doi:10.1016/j.taap.2019.114649 (2019).
19 Alam, K. et al. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 19, doi:10.3390/ijms19030855 (2018).
20 Gao, C. M. et al. Effect of OATP1B1 genetic polymorphism on the uptake of tamoxifen and its metabolite, endoxifen. Oncol Rep 38, 1124-1132, doi:10.3892/or.2017.5727 (2017).
21 Gregory, B. J., Chen, S. M., Murphy, M. A., Atchley, D. H. & Kamdem, L. K. Impact of the OATP1B1 c.521T>C single nucleotide polymorphism on the pharmacokinetics of exemestane in healthy post-menopausal female volunteers. J Clin Pharm Ther 42, 547-553, doi:10.1111/jcpt.12569 (2017).
22 Wang, X., Wolkoff, A. W. & Morris, M. E. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators. Drug Metab Dispos 33, 1666-1672, doi:10.1124/dmd.105.005926 (2005).
23 Schulte, R. R. & Ho, R. H. Organic Anion Transporting Polypeptides: Emerging Roles in Cancer Pharmacology. Mol Pharmacol 95, 490-506, doi:10.1124/mol.118.114314 (2019).
24 Falkowski, S. et al. Common variants in glucuronidation enzymes and membrane transporters as potential risk factors for colorectal cancer: a case control study. BMC Cancer 17, 901, doi:10.1186/s12885-017-3728-0 (2017).
25 Obaidat, A., Roth, M. & Hagenbuch, B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 52, 135-151, doi:10.1146/annurev-pharmtox-010510-100556 (2012).
26 Buxhofer-Ausch, V. et al. Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. J Drug Deliv 2013, 863539, doi:10.1155/2013/863539 (2013).
27 Pu, Z., Zhang, X., Chen, Q., Yuan, X. & Xie, H. Establishment of an expression platform of OATP1B1 388GG and 521CC genetic polymorphism and the therapeutic effect of tamoxifen in MCF-7 cells. Oncol Rep 33, 2420-2428, doi:10.3892/or.2015.3864 (2015).
28 Nagy, A. et al. Marked differences in frequencies of statin therapy relevant SLCO1B1 variants and haplotypes between Roma and Hungarian populations. BMC Genet 16, 108, doi:10.1186/s12863-015-0262-4 (2015).
29 Romaine, S. P., Bailey, K. M., Hall, A. S. & Balmforth, A. J. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J 10, 1-11, doi:10.1038/tpj.2009.54 (2010).
30 Sissung, T. M. et al. Transporter pharmacogenetics: transporter polymorphisms affect normal physiology, diseases, and pharmacotherapy. Discov Med 13, 19-34 (2012).
31 Aklillu, E. et al. Frequency of the SLCO1B1 388A>G and the 521T>C polymorphism in Tanzania genotyped by a new LightCycler®-based method. Eur J Clin Pharmacol 67, 1139-1145, doi:10.1007/s00228-011-1065-9 (2011).
32 Liutkeviciene, R. et al. Evaluation of serum SLCO1B1 levels and genetic variants of SLCO1B1 rs4149056 and rs2306283 in patients with early and exudative age-related macular degeneration. Gene 676, 139-145, doi:10.1016/j.gene.2018.07.031 (2018).
33 Crowe, A. et al. Characterization of Plasma Membrane Localization and Phosphorylation Status of Organic Anion Transporting Polypeptide (OATP) 1B1 c.521 T>C Nonsynonymous Single-Nucleotide Polymorphism. Pharm Res 36, 101, doi:10.1007/s11095-019-2634-3 (2019).
34 Noci, S. et al. A subset of genetic susceptibility variants for colorectal cancer also has prognostic value. Pharmacogenomics J 16, 173-179, doi:10.1038/tpj.2015.35 (2016).
35 Pasanen, M. K., Neuvonen, P. J. & Niemi, M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 9, 19-33, doi:10.2217/14622416.9.1.19 (2008).
36 Basmaci, C. et al. Effects of TNFalpha, NOS3, MDR1 Gene Polymorphisms on Clinical Parameters, Prognosis and Survival of Multiple Myeloma Cases. Asian Pac J Cancer Prev 17, 1009-1014, doi:10.7314/apjcp.2016.17.3.1009 (2016).
37 Hagenbuch, B. & Stieger, B. The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 34, 396-412, doi:10.1016/j.mam.2012.10.009 (2013).
38 Green, S. M. et al. Role of OATP transporters in steroid uptake by prostate cancer cells in vivo. Prostate Cancer Prostatic Dis 20, 20-27, doi:10.1038/pcan.2016.42 (2017).
39 Chen, S. et al. Low expression of organic anion-transporting polypeptide 1B3 predicts a poor prognosis in hepatocellular carcinoma. World J Surg Oncol 18, 127, doi:10.1186/s12957-020-01891-y (2020).
40 Alam, K., Farasyn, T., Crowe, A., Ding, K. & Yue, W. Treatment with proteasome inhibitor bortezomib decreases organic anion transporting polypeptide (OATP) 1B3-mediated transport in a substrate-dependent manner. PLoS One 12, e0186924, doi:10.1371/journal.pone.0186924 (2017).
41 Buxhofer-Ausch, V. et al. Two common polymorphic variants of OATP4A1 as potential risk factors for colorectal cancer. Oncol Lett 20, 252, doi:10.3892/ol.2020.12115 (2020).
42 Ozhan, G., Kara, M., Sari, F. M., Yanar, H. T. & Alpertunga, B. Influence of the functional polymorphisms in the organic anion transporting polypeptide 1B1 in the susceptibility to colorectal cancer. Genet Test Mol Biomarkers 17, 214-218, doi:10.1089/gtmb.2012.0334 (2013).
43 Zhang, X. et al. Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C polymorphisms and overall survival of breast cancer patients after tamoxifen therapy. Med Sci Monit 21, 563-569, doi:10.12659/msm.893473 (2015).
44 Teft, W. A. et al. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy. Br J Cancer 112, 857-865, doi:10.1038/bjc.2015.5 (2015).
45 Shitara, Y. et al. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 34, 45-78, doi:10.1002/bdd.1823 (2013).
46 Sai, K. et al. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother Pharmacol 66, 95-105, doi:10.1007/s00280-009-1138-y (2010).
47 Lopez-Lopez, E. et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 57, 612-619, doi:10.1002/pbc.23074 (2011).
48 Han, J. Y. et al. Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer 59, 69-75, doi:10.1016/j.lungcan.2007.07.019 (2008).
49 Martinez, D. et al. Endogenous Metabolites-Mediated Communication Between OAT1/OAT3 and OATP1B1 May Explain the Association Between SLCO1B1 SNPs and Methotrexate Toxicity. Clin Pharmacol Ther 104, 687-698, doi:10.1002/cpt.1008 (2018).
50 Na Nakorn, C. et al. Genetic Variations and Frequencies of the Two Functional Single Nucleotide Polymorphisms of SLCO1B1 in the Thai Population. Front Pharmacol 11, 728, doi:10.3389/fphar.2020.00728 (2020).
51 Zhang, H. et al. Dual-channel fluorescence diagnosis of cancer cells/tissues assisted by OATP transporters and cysteine/glutathione. Chem Sci 9, 3209-3214, doi:10.1039/c7sc05407f (2018).