1. Trust for American’s Health. CDC Data Show High Hospitalization Rates for Diagnosed COVID-19 Patients with Underlying Conditions in the United States 2021 [Available from: https://www.tfah.org/wp-content/uploads/2020/04/COVIDunderlyingconditions040320.pdf accessed October 30 2021.
2. NIH. What's New in the Guidelines 2021 [Available from: https://www.covid19treatmentguidelines.nih.gov/about-the-guidelines/whats-new/ accessed October 30 2021.
3. Archambault AS, Zaid Y, Rakotoarivelo V, et al. High levels of eicosanoids and docosanoids in the lungs of intubated COVID‐19 patients. The FASEB Journal 2021;35(6) doi: 10.1096/fj.202100540r
4. Al-Hakeim HK, Al-Hamami SA, Almulla AF, et al. Increased Serum Thromboxane A2 and Prostacyclin but Lower Complement C3 and C4 Levels in COVID-19: Associations with Chest CT Scan Anomalies and Lowered Peripheral Oxygen Saturation. COVID 2021;1(2):489-502. doi: 10.3390/covid1020042
5. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregates formation trigger tissue factor expression in severe COVID-19 patients. Blood 2020 doi: 10.1182/blood.2020007252 [published Online First: 2020/07/18]
6. Larsson AK, Hagfjärd A, Dahlén SE, et al. Prostaglandin D₂ induces contractions through activation of TP receptors in peripheral lung tissue from the guinea pig. Eur J Pharmacol 2011;669(1-3):136-42. doi: 10.1016/j.ejphar.2011.07.046 [published Online First: 2011/08/30]
7. Walch L, De Montpreville V, Brink C, et al. Prostanoid EP1- and TP-receptors involved in the contraction of human pulmonary veins. British Journal of Pharmacology 2001;134(8):1671-78. doi: 10.1038/sj.bjp.0704423
8. Craven PA, Studer RK, DeRubertis FR. Thromboxane/Prostaglandin Endoperoxide-Induced Hypertrophy of Rat Vascular Smooth Muscle Cells Is Signaled by Protein Kinase C-Dependent Increases in Transforming Growth Factor-β. Hypertension 1996;28(2):169-76. doi: doi:10.1161/01.HYP.28.2.169
9. Witkowski M, Tizian C, Ferreira-Gomes M, et al. Untimely TGFβ responses in COVID-19 limit antiviral functions of NK cells. Nature 2021 doi: 10.1038/s41586-021-04142-6
10. Theken KN, Fitzgerald GA. Bioactive lipids in antiviral immunity. Science 2021;371(6526):237-38. doi: 10.1126/science.abf3192
11. Sposito B, Broggi A, Pandolfi L, et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell 2021 doi: https://doi.org/10.1016/j.cell.2021.08.016
12. Gupta A, Kalantar-Zadeh K, Srinivasa RT. Ramatroban as a Novel Immunotherapy for COVID-19. Molecular and Genetic Medicine 2020;14(3) doi: 10.37421/jmgm.2020.14.457
13. Gupta A, Chiang KC. Prostaglandin D2 as a mediator of lymphopenia and a therapeutic target in COVID-19 disease. Medical Hypotheses 2020;143:110122. doi: 10.1016/j.mehy.2020.110122
14. Uller L, Mathiesen JM, Alenmyr L, et al. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation. Respiratory Research 2007;8(1) doi: 10.1186/1465-9921-8-16
15. Ishizuka T, Matsui T, Okamoto Y, et al. Ramatroban (BAY u 3405): a novel dual antagonist of TXA2 receptor and CRTh2, a newly identified prostaglandin D2 receptor. Cardiovasc Drug Rev 2004;22(2):71-90. doi: 10.1111/j.1527-3466.2004.tb00132.x
16. Schuster DP, Kozlowski J, Brimiouelle S. Effect of thromboxane receptor blockade on pulmonary capillary hypertension in acute lung injury. 2001 Meeting of the American Thoracic Society. San Francisco, CA, 2001.
17. An J, Li JQ, Wang T, et al. Blocking of thromboxane A(2) receptor attenuates airway mucus hyperproduction induced by cigarette smoke. Eur J Pharmacol 2013;703(1-3):11-7. doi: 10.1016/j.ejphar.2013.01.042 [published Online First: 2013/02/13]
18. Kobayashi K, Horikami D, Omori K, et al. Thromboxane A2 exacerbates acute lung injury via promoting edema formation. Scientific Reports 2016;6(1):32109. doi: 10.1038/srep32109
19. Bauer J, Ripperger A, Frantz S, et al. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2receptor activation. British Journal of Pharmacology 2014;171(13):3115-31. doi: 10.1111/bph.12677
20. Zhao Z, Hu J, Gao X, et al. Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells. Oncotarget 2017;8(18):30030-38. doi: 10.18632/oncotarget.16273
21. Keikha R, Hashemi-Shahri SM, Jebali A. The relative expression of miR-31, miR-29, miR-126, and miR-17 and their mRNA targets in the serum of COVID-19 patients with different grades during hospitalization. Eur J Med Res 2021;26(1):75. doi: 10.1186/s40001-021-00544-4 [published Online First: 2021/07/15]
22. Wang H-W, Huang T-S, Lo H-H, et al. Deficiency of the MicroRNA-31–MicroRNA-720 Pathway in the Plasma and Endothelial Progenitor Cells From Patients With Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology 2014;34(4):857-69. doi: doi:10.1161/ATVBAHA.113.303001
23. Xue L, Gyles SL, Wettey FR, et al. Prostaglandin D2 Causes Preferential Induction of Proinflammatory Th2 Cytokine Production through an Action on Chemoattractant Receptor-Like Molecule Expressed on Th2 Cells. The Journal of Immunology 2005;175(10):6531-36. doi: 10.4049/jimmunol.175.10.6531
24. Xue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. Journal of Allergy and Clinical Immunology 2014;133(4):1184-94.e7. doi: 10.1016/j.jaci.2013.10.056
25. Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduction and Targeted Therapy 2020;5(1) doi: 10.1038/s41392-020-00243-2
26. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020;584(7821):463-69. doi: 10.1038/s41586-020-2588-y
27. Perlman S. COVID-19 poses a riddle for the immune system. Nature 2020;584(7821):345-46. doi: 10.1038/d41586-020-02379-1 [published Online First: 2020/08/19]
28. Skaria T, Burgener J, Bachli E, et al. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling. PLOS ONE 2016;11(5):e0156002. doi: 10.1371/journal.pone.0156002
29. Donlan AN, Sutherland TE, Marie C, et al. IL-13 is a driver of COVID-19 severity. JCI Insight 2021 doi: 10.1172/jci.insight.150107
30. Tanabe T, Fujimoto K, Yasuo M, et al. Modulation of mucus production by interleukin-13 receptor alpha2 in the human airway epithelium. Clin Exp Allergy 2008;38(1):122-34. doi: 10.1111/j.1365-2222.2007.02871.x [published Online First: 2007/11/22]
31. Gómez-Escobar LG, Hoffman KL, Choi JJ, et al. Cytokine signatures of end organ injury in COVID-19. Scientific Reports 2021;11(1):12606. doi: 10.1038/s41598-021-91859-z
32. Broggi A, Ghosh S, Sposito B, et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science 2020;369(6504):706-12. doi: 10.1126/science.abc3545
33. Werder RB, Lynch JP, Simpson JC, et al. PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN-lambda production. Sci Transl Med 2018;10(440) doi: 10.1126/scitranslmed.aao0052
34. Ricke-Hoch M, Stelling E, Lasswitz L, et al. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLOS ONE 2021;16(8):e0255335. doi: 10.1371/journal.pone.0255335
35. Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nature Communications 2021;12(1):2506. doi: 10.1038/s41467-021-22781-1
36. Tantry US, Bliden KP, Cho A, et al. First Experience Addressing the Prognostic Utility of Novel Urinary Biomarkers in Patients With COVID-19. Open Forum Infectious Diseases 2021;8(7) doi: 10.1093/ofid/ofab274
37. Westlund P, Kumlin M, Nordenström A, et al. Circulating and urinary thromboxane B2 metabolites in the rabbit: 11-dehydro-thromboxane B2 as parameter of thromboxane production. Prostaglandins 1986;31(3):413-43. doi: 10.1016/0090-6980(86)90106-1 [published Online First: 1986/03/01]
38. Townsend L, Fogarty H, Dyer A, et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost 2021;19(4):1064-70. doi: 10.1111/jth.15267 [published Online First: 2021/02/16]
39. Huang L, Yao Q, Gu X, et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. The Lancet 2021;398(10302):747-58. doi: 10.1016/s0140-6736(21)01755-4
40. Pang J, Qi X, Luo Y, et al. Multi-omics study of silicosis reveals the potential therapeutic targets PGD(2) and TXA(2). Theranostics 2021;11(5):2381-94. doi: 10.7150/thno.47627 [published Online First: 2021/01/28]
41. Onaka Y, Shintani N, Nakazawa T, et al. CRTH2, a prostaglandin D2 receptor, mediates depression-related behavior in mice. Behavioural Brain Research 2015;284:131-37. doi: https://doi.org/10.1016/j.bbr.2015.02.013