The aim of this study was to explore the association of mitochondrial respiratory chain enzyme activities with the risk of sepsis and its associated mortality risk among hospital-based children. The key findings are the promising predictive contribution of serum CoQ10 and complex I + III to the risk of pediatric sepsis and its associated mortality during hospitalization, highlighting the importance of mitochondrial respiratory chain enzymes in the development and progression of pediatric sepsis. To the best of our knowledge, this is the first study that has evaluated the association of circulating mitochondrial respiratory chain enzyme activities with sepsis risk in the literature.
Currently, the biological implications of mitochondrial dysfunction in sepsis have been widely evaluated [8, 21, 22]. Mitochondria produce ATP by transferring electrons from substrates sequentially across four respiratory chain complexes (I to IV) and two mobile carriers (coenzyme Q and cytochrome C) to final electron acceptors [23]. Mitochondrial dysfunction is deemed as a key cellular event involved in the pathogenesis of multi-organ failure in sepsis, and it is secondary to tissue hypoxia and involves various toxins or mediators of inflammation that impair oxygen utilization (cytopathic hypoxia) [23, 24]. There is evidence that damaged mitochondria contribute to NACHT, LRR and PYD domains‑containing protein 3 (NLRP3) inflammasome‑related sepsis [21]. In addition, hydrogen was found to alleviate mitochondrial dysfunction and cytokine release via autophagy‑mediated NLRP3 inflammasome inactivation [11]. On the basis of above evidence, it is reasonable to hypothesize that mitochondrial dysfunction plays a contributory role in the development of sepsis, especially the abnormal expressions of mitochondrial respiratory chain complexes and mobile carriers. In support of this hypothesis, Donnino and colleagues conducted a randomized, double-blind, placebo-controlled, pilot trial, by showing that plasma CoQ10 levels were increased in patients with severe sepsis or septic shock, with the administration of oral ubiquinol [25]. However, the contribution of mitochondrial respiratory chain complexes and mobile carriers to the development and progression of sepsis has been rarely reported. To shed some light, we assayed the activities of mitochondrial respiratory chain enzymes in circulation among children with and without clinically-confirmed sepsis to examine their association with the risk and mortality of pediatric sepsis.
After a comprehensive analysis, we interestingly found that high CoQ10 and complex I + III levels were significantly associated with the reduced risk of having pediatric sepsis, as well as the reduced risk of dying from sepsis during hospitalization. CoQ10 has been proposed as an effective agent for reducing the deleterious effects of septic shock by acting as an oxygen free radical scavenger and thus stabilizing mitochondrial membranes, as well as by inhibiting the arachidonic acid metabolic pathway and the formation of various prostaglandins. There is evidence that CoQ10 is effective in alleviating histological organ damage in sepsis via mortality statistics of mice model [26]. In addition, animal studies indicated that complex I + III activity was higher in the sepsis groups than healthy controls in septic mice models caused by lipopolysaccharide, and after treatment with Simvastatin, mitochondrial complex I + III expression was increased [27]. Given the significant association observed in this present study and strong biological implications, it would be tempting to speculate that dysregulation of mitochondrial respiratory chain, in particular CoQ10 and complex I + III, is attributable to the pathogenesis of pediatric sepsis. Moreover, considering the high mortality rate of sepsis in children, identification of circulating biomarkers is of great importance in sanitary science and public health.
Several limitations should be acknowledged for this study. First, the small sample size involved may limit the power to detect small contributions. Second, all study participants are of Chinese descent, which may limit the extrapolation of our findings to other ethnic groups. Third, only a death-or-discharge outcome was recorded during hospitalization and further follow-up evaluation was not available for us. Fourth, mitochondrial respiratory chain enzyme activities were assayed only once, and their dynamic monitoring is of added interest.