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Abstract

Background: The current study was aimed to investigate the mechanisms of advanced glycation end
products (AGEs) in exacerbating post- myocardial infarction (M) ventricular arrhythmias (VAs).

Methods: Correlation between premature ventricular contractions (PVCs) and serum AGEs concentrations
was analyzed in a cohort consisted of 101 STEMI patients with culprit vessel of left anterior descending
artery (LAD). Established Ml rat model were treated with AGEs and/or anti- receptor for AGE (RAGE)
antibody. Electrocardiography was used to record VAs. Myocytes were isolated from adjacent area around
infracted region. Immunofluorescent stains were used to evaluate association between FKBP12.6 (FK506-
bindingprotein 12.6) and ryanodine receptor 2 (RyR2). Calcium sparks were evaluated by confocal
microscope. Protein expression and phosphorylation were assessed by Western blotting. A colorimetric
method was used to determine the enzymatic activity of calcineurin (CaN). [*H]-ryanodine binding assay
was carried out to detect the RyR2 channel activity.

Results: In the cohort study, significantly increased amount of (PVCs) were found in STEMI patients with
diabetes (P<0.05). Serum AGEs concentration was significantly positively correlated with PVCs amount in
STEMI patients (r=0.416, P<0.001). Multivariate analysis showed serum AGEs concentration was
independently and positively related to frequent PVCs (adjusted hazard ratio, 1.86; 95% Cl, 1.09-3.18,
P=0.022). In the animal study, increased glucose regulated protein 78 (GRP78) expression, protein kinase
RNA-like ER kinase (PERK) phosphorylation, CaN enzymatic activity, FKBP12.6-RyR2 disassociation, RyR2
channel opening and endoplasmic reticulum (ER) calcium releasing were found in Ml animals exposed to
AGEs, which were attenuated by anti-RAGE antibody treatment. This RAGE blocking also significantly
lowered the VAs amount in Ml animals exposed to AGEs.

Conclusions: Hyper-activation of ER stress- mediated PERK/CaN/RyR2 signaling participated in AGEs-
exacerbated post-Ml VAs.

Background

Higher incidence of lethal arrhythmias such as R-on-T premature ventricular contractions (PVCs),
ventricular tachycardia and ventricular fibrillation were found in diabetes, which has been identified as a
risk factor elevating the incidence of ventricular arrhythmia-related adverse events [1]. In our previous
investigation, elevated amount of VAs was found in diabetic animals[2]. Ventricular arrhythmia (VA) is a
common complication after myocardial infarction (Ml). Increased risks of occurrence of life-threatening
VAs were identified in acute MI (AMI) patients, which elevated in-hospital mortality. However, the
underlying mechanisms of the exacerbating role of diabetes in post-MI VAs are still unclear.

Advanced glycation end products (AGEs) are characterized metabolites of DM which participated in many
DM- associated pathological processes. AGEs are fostered by non-enzymatic reactions among nucleic
acids, amino groups and lipids in DM and closely correlated with major adverse cardiovascular events
(MACE) including lethal arrhythmias[3]. A recent study pointed out that inhibiting AGEs formation
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attenuated the vulnerability to tachyarrhythmias in diabetic animals[4]. In this regard, we hypothesized
that AGEs might be the cause facilitating post-Ml VAs.

Calcium homeostasis is important for maintaining the normal electrophysiological integrity of myocytes.
Previous investigation suggested intracellular calcium metabolism dys-regulation contributed to
arrhythmias in diabetic hearts[5]. Delayed afterdepolarizations (DADs) have been recognized as the
mechanism triggering VAs. Appearing posterior to the completion of repolarization, DADs are induced by
oscillation of intracellular calcium released from endoplasmic reticulum (ER), which further trigger a
greater amount calcium release from ER via channels such as ryanodine receptor 2 (RyR2), which was
termed as calcium- induced calcium release (CICR) [6].

ER is the major cellular organelle maintaining intracellular calcium homeostasis[7]. ER stress is triggered
when challenged by strong and sustained harmful stimuli [8]. Protein kinase RNA-like ER kinase (PERK) is
a sensor transducting ER stress signals. By direct contacting, PERK activates calcineurin (CaN) which
further facilitates ER calcium releasing via promoting the disassociation of FK506-binding protein 12.6
(FKBP12.6) from RyR2[9]. Our previous investigation indicated that ER stress PERK signaling was
activated in diabetic hearts, inducing ventricular arrhythmias through the PERK/CaN signaling[10].

Notably, results from an investigation suggested that AGEs induced RyR2 channel hyperactivation-
mediated ER calcium releasing after interacting with the receptor for AGE (RAGE) in cultured
myocytes[11]. Moreover, interestingly, several previous studies pointed out ER stress PERK signaling
activations were RAGE- dependent[12, 13]. Thus, it is reasonable for us to speculate that AGEs cause
aggravation of post-MI VAs in DM. The RAGE- dependent ER stress mediated PERK/CaN/RyR2 signaling
pathway could be possibly involved. We believe that results from this study would enrich our current
understanding of the mechanisms of exacerbated post-MI VAs in DM.

Materials And Methods

Cohort study

In the period from May, 2017 to May, 2019, 115 patients diagnosed as STEMI with the culprit vessel of
LAD at Shaanxi Provincial People's Hospital were initially included. The final cohort consisted of 101
STEMI patients. 3 patients were excluded due to identification of malignant cancer; 1 patient was
excluded due to diagnosis of systemic lupus erythematosus; 10 patients were excluded because of rapid
development of cardiac systolic dysfunction which were eventually supported by extra-corporeal
membrane oxygenation (ECMO) or left ventricular assist devices. STEMI was diagnosed by the current
guideline[14]. Culprit vessel was determined by ECG manifestation and coronary angiography. Diabetes
was diagnosed according to current guideline[15]. Post-MI VAs were recorded by Holter ECG. Frequent
premature ventricular contractions (PVCs) was defined as ventricular premature beats take = 10% of total
cardiac beats during 24 hour- Holter ECG recording[16]. The exclusion criteria were: age below 18 years or
above 80 years; pregnant women; previous myocardial infarction; previous PCI/CABG history; New York
Heart Association (NYHA) functional class Ill or IV, renal failure, hepatic dysfunction, known history of
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cancer, immune-mediated disorders, mental disorders, recent/current use of anti-arrhythmic drugs. The
peripheral venous blood samples were collected in a fasting state. Serum AGEs concentrations were
determined by using a Human AGEs ELISA kit (CUSABIO, China) per the protocols provided by the
manufacturer. All of the patients gave informed consent to participate in this study, which was approved
by the ethics committee of Shaanxi Provincial Peoples’ Hospital. Specifically, patients signed the
informed consent and agreed the collection and research purposes of medical records for our
investigation.

AGEs-BSA preparation

The protocol was in accordance with our previous investigations[17]. Briefly, 0.1 mmol/L glyceraldehydes
(Sigma) and bovine serum albumin (BSA) were incubated in 0.2 mmol/L NaPO, buffer solution (pH = 7.4)
at 37°C at sterile condition for 7 days. BSA prepared without glyceraldehydes by the same protocol was
used as control.

MI model establishment and animal treatments

SPF class Sprague-Dawley (SD) rats (9-week old, male/femal = 1, weighted 255 + 6 g) were provided by
Animal Experimental Center of Xi'an Jiaotong University. Animals were maintained in independent
polypropylene cages under controlled conditions (12 h/12 h artificial light/dark cycle, humidity at 56%
+4%, temperature at 25°C+1°C). Animals were accessible to standard chow and sterilized water freely.
Animals were accommodated 1 week prior to experiments.

Rats were anaesthetized by inhalation of isoflurane (2% for introducing and 4% for continuous
anesthesia) in oxygen at 0.6L/min. MI model was induced by ligation of LAD following the protocol
adopted from our previous investigation [18]. Before establishment of Ml model, AGEs-BSA and/or anti-
RAGE IgG5 (Abcam) were administrated to animals via remaining needles implemented in tail veins. The
dosages anti-RAGE antibody were selected according to previous reports[19, 20]. Treatments of each
group were listed in Table 1.
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Animal treatments in each group

Table 1

Groups (n=10)

Control (sham
operation)

Myocardial infarction
(MI) model

MI model and AGEs
treatments

MI model, AGEs
exposure and RAGE
antibody treatments

Treatment1

Reagent

BSA

BSA

AGEs-BSA
(100 mg/Kg)

AGEs-BSA
(100 mg/Kg)

Description

chronic tail vein
injection for
consecutive 8 weeks
(1 injection/d)

chronic tail vein
injection for
consecutive 8 weeks
(1 injection/d)

chronic tail vein
injection for
consecutive 8 weeks
(1 injection/d)

chronic tail vein
injection for
consecutive 8 weeks
(1 injection/d)

Treatment2

Reagent

Physiological
saline

Physiological
saline

Physiological
saline

monoclonal
anti-RAGE

|gG3
(1 mg/Kg)

Description

chronic tail vein
injection for 8
weeks (3
injection/w)

chronic tail vein
injection for 8
weeks (3
injection/w)

chronic tail vein
injection for 8
weeks (3
injection/w)

chronic tail vein
injection for 8
weeks (3
injection/w)
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Table 1
Baseline clinical characteristics of the study patients

Total DM() DM(+) P
value

(n=101) (n=67) (n=34)
Age (year) 53.54+4.64 54.21+4.36 52.21+4.93 0.052
Male (%) 62(61.4) 42(62.7) 20(58.8) 0.829
BMI (kg/mz) 2412+1.42 2412+1.45 2410+1.37 0.963
Smoking history (%) 38 (37.6) 27 (40.3) 11(32.4) 0.517
Mean heart rate/24hours 69.56+9.93 70.21+9.15 68.29+11.34 0.314
(bpm)
CRE (umol/L) 60.60+7.30 61.12+7.06 59.56+7.77 0.291
UA (umol/L) 282.75141.31 288.16+43.18 272.09 + 35.58 0.071
ALT (U/L) 26.84+11.11 27.53+11.40 25.47 £10.55 0.495
AST (U/L) 81.39+14.97 80.69+13.98 82.76+16.88 0.490
LDL (mmol/L) 1.98+0.74 2.08+0.74 1.78+0.73 0.097
K* (mmol/L) 4.26+0.31 4.25+0.33 4.29+0.26 0.433
Na*(mmol/L) 138.102.50 138.01+2.30 138.26 +2.90 0.977
BNP(pg/ml) 68.15+ 30.06 66.07+£31.63 72.24 +26.69 0.163
Troponin I(ng/ml) 5.36+3.31 5.20+3.02 5.67+3.85 0.736
QTc interval (ms) 426.42+11.26 426.51+10.47 426.24+12.84 0.838
AGEs (ug/mL) 18.45+ 2.00 15.30 +0.96 24.60+1.92 <

0.001

PVCs/24 hours 5685.62 + 4638.40 £ 7749.27 + <

2940.11 2419.98 2804.95 0.001

Continuous variables are presented as mean * SD; categorical variables are presented as numbers or
percentages.

Abbreviations: ALT, glutamic-pyruvic transaminase; AST, glutamic-oxalacetic transaminease. BMI,
body mass index; BNP, brain natriuretic peptide; CRE, creatinine; LDL, low density lipoprotein; UA, uric
acid; AGEs, advanced glycation end products; PVCs, premature ventricular contractions.

Electrocardiography (ECG) evaluation

Anasthetized rats were fixed in a supine position, the standard limb leads were attached to the upper and
lower limbs of the rats and connected to Powerlab 4/25 Biological Analysis System (AD Instruments)
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which recorded the ECG. Occurring amount of VAs, including ventricular premature beats and tachycardia
were recorded.

Primary myocytes isolation

The primary myocytes were isolated from the hearts harvested from the rats in accordance with the
protocol described in our previous study[2]. Specifically, the myocytes were carefully extracted from the
adjacent area around infracted region in the anterior left ventricular wall under a dissecting microscope.
Myocytes were maintained in Dulbecco Modified Eagle's Medium (DMEM) supplemented fetal bovine
serum (15%, FBS, Hyclone) and antibiotic mix (Sigma) at 37°C in an atmosphere composed of 95% fresh
airand 5% CO,. When cell populations reached confluence at 50%-60%, the cells were used for

subsequent experiments.
Immunofluorescent staining

The protocols were carried out in accordance with our previous investigation[10]. Cultured primary
myocytes were fixed by 4% paraformaldehyde for 15 min and permeabilized by 0.2% Triton on a cover
glass. After incubation with blocking buffer (Abcam), fixed cells were incubated with primary antibody
against RyR2 (Abcam, 1:200) and primary antibody against FKBP12.6 (Abcam, 1:100) at 4°C for 12
hours. Nuclei were tagged by 4,6-Diamidino-2-phenylindole (DAPI, Sigma Aldrich). After washing, Alexa-
488 conjugated secondary antibody (Invitrogen) and Alexa-555 conjugated secondary antibody
(Invitrogen) were used to tag RyR2 and FKBP12.6 respectively. Fluorescence quenching was alleviated by
using Antifade Kit (Molecular Probes). Axio Imager 2 inverted microscope (Zeiss) was used to capture the
fluorescent images after excited at 488 nm and 594 nm respectively. Zeiss Physiological software (Zeiss,
ver3.2) was used to analyze the co-localizations of RyR2 and FKBP12.6 based on these images.

Calcium spark detection

The calcium spark was detected in isolated myocytes by confocal optical calcium imaging according to
the methods described previsouly[21]. Isolated myocytes were loaded with 10 umol/I Fluo3/AM (Sigma-
Aldrich) for 30 minutes at 37°C in a humidified dark chamber. After washed by PBS, calcium sparks were
observed with a SP8 STED confocal microscope (Leica) equipped with an argon laser at wave length at
488 nm. Liner scan was used to acquire the line scan images (512 pixels/line) at sampling rate of

2 ms/line. The scanning frequency was 600 Hz. Calcium sparks were analyzed by Image J with
SparkMaster Plugin according to previous described method[22].

Cytosol and ER membrane fraction preparation and Western blotting

Subfraction isolation protocols were carried out according to ours and others’ previous descriptions[10,
23]. With Protein Extraction kits (Beyotime), proteins were extracted from cytosol preparation and ER
membrane preparation according to the protocol provided by the manufacturer respectively. A BCA kit
(Beyotime) was used to determine the protein concentrations of the samples which were then subjected

to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The separated proteins were
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then transferred to polyvinylidene fluoride (PVDF) membranes. After treated with blocking buffer (Abcam),
primary antibodies against GRP78 (Abcam, 1:4000), phosphorylated PERK (p-PERK, Cell Signaling Tech,
1:2000), PERK (Cell Signaling Tech, 1:2000), FKBP12.6 (Invitrogen, 1:2000), Sigma receptor 1 (SigmaR1,
Invitrogen, 1:1000) and GAPDH (Abcam, 1:1000) were used to incubate the membranes at 4°C for 12
hours. After TBST washing, the membranes were incubated by corresponding HRP conjugated secondary
antibodies (Abcam) at room temperature for 2 h. After developed with Super Signal West Pico
chemiluminescence reagent (Thermo Scientific), the immunobands were visualized on X-ray films and
then analyzed with ImageJ2x software (Rawak Software).

[H3]-ryanodine bind assay

[H3]-ryanodine bind assay was used to assess the channel activity of RyR2 according to the protocol
described previously[10]. Cell lysate were incubated with [H3]-ryanodine solution (PerkinElmer) at final
concentration of 20 nmol/L in binding buffer (25 mmol/L Tris, 50 mmol/L HEPES, 100 pmol/L CaCl2,

1 mmol/Lbenzamidine, 0.5 mmol/L phenylmethanesulfonyl fluoride, 2 pg/mipepstain A, 2 ug/ml
leupeptin and 2 pg/ml aprotinin) at 37°C for 3 h. After washed with washing buffer (25 mmol/L Tris and
250 mmol/L KCI) and filtered with washing buffer- soaked membrane filter (Millipore), the radioactivity of
the filter was detected by liquid scintillation counter (Bioscan) which represented the binding [*H]-
ryanodine.

Calcineurin (CaN) activity detection

The CaN enzymatic activity was determined in total protein samples with a colorimetric method
according to the protocol described previously[10]. A Calcineurin Activity Assay kit (Merck) was used per
manufacturer’s instructions.

Statistics

Data acquired in this study were presented in (mean * standard deviations) or percentage manner.
Number of independent experiments carried out was indicated as n. NSK tests were performed as post-
hoc tests. Participants were divided into 2 groups (diabetes and non-diabetes). The baseline
characteristics among the 2 groups were analyzed by t test for parametric variables, the Mann-Whitney U
test for nonparametric variables, and the chi-square test for categorical variables. The Spearman rank
correlation coefficient was computed to assess correlation between continuous variables. The
association between serum AGEs and frequent PVCs were estimated with univariate and multivariate
logistic regression models. Model 1 was unadjusted. Model 2 was adjusted for age, sex, body mass index,
cigarette smoking. Model 3 was adjusted for age, sex, body mass index, cigarette smoking, creatinine, UA,
low density lipoprotein, K*, Na*, troponin |, BNP, QTC interval. All statistical testing was 2-sided. Results
were considered statistically significant at a level of P <0.05. All analyses were performed with PASW
Statistics 20.0 software.
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Results

Serum AGEs concentration elevation correlated with
frequent PVCs in STEMI patients

Data were successfully obtained from 101 STEMI patients. The baseline data was listed in Table 2.
STEMI patients were divided into diabetes group and non-diabetes group. The amount of 24 h- PVCs was
significantly higher in diabetes group than non-diabetes group (Fig. 1a). Spearman rank correlation was
used to analyze the association between 24-h PVCs amount and serum AGEs concentrations. Results
showed that 24-h PVCs amount and serum AGEs concentrations was significantly and positively related
(r=0.461,P<0.001) (Fig. 1b). The univariate and multivariate logistic regression models were used to
further evaluate the association between frequent PVCs and serum AGEs concentration in STEMI
patients. As demonstrated in Table 3, in univariable Cox regression model (Model 1), serum AGEs
concentration was positively correlated with frequent PVCs (OR =1.90,95% CI 1.36—2.65, P<0.001).
Results of multivariate analysis suggested serum AGEs concentration was positively and independently
correlated with frequent PVCs (adjusted OR =1.93,95% CI 1.29-2.90, P = 0.001) after adjusting for age,
sex, body mass index, cigarette smoking(Model 2). The results were similar in Model 3 (adjusted OR =
1.86,95% CI 1.09-3.18, P = 0.022) after adjusting for age, sex, body mass index, cigarette smoking,
creatinine, UA, low density lipoprotein, K+, Na+,troponin I, BNR and QTC interval.

Table 2
Univariate and multivariate logistic analysis as a continuous variable of AGEs concentration
Model 1* Model 2t Model 3%
OR (95% ClI) P OR (95% ClI) P OR (95% Cl) P
value value value
STEMI (n = 1.90(1.36- < 1.93(1.29- 0.001 1.86(1.09- 0.022
101) 2.65) 0.001 2.90) 3.18)

* Model 1: unadjusted.
T Model 2: multivariate adjustment was made for age, sex, body mass index, cigarette smoking.

T Model 3: multivariate adjustment was made for age, sex, body mass index, cigarette smoking,
creatinine, UA, low density lipoprotein, K+, Na+,troponin I, BNP, QTC interval.

Abbreviations: STEMI, ST- segment elevation myocardial infarction; Cl, confidence interval; OR, odds
ratio.

RAGE antibody administration attenuated AGEs-
exacerbated ventricular arrhythmias in Ml rats

As demonstrated in Fig. 2a, VAs were presented as PVCs and ventricular tachycardias. In some particular
cases, bigeminal rhythm, polymorphic PVCs and paroxysmal ventricular tachycardia could be observed.
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Amount of VAs increased significantly in Ml rats compared with control, which was further dramatically
increased by AGEs exposure. However, the RAGE antibody treatment significantly reduced VAs amount in
AGEs-exposed Ml rats (Fig. 2b).

RAGE blocking suppressed activation of ER stress-
mediated PERK/CaN signaling in AGEs-exposed Ml rats

As demonstrated in Fig. 3, we found that the expression level of GRP78, phosphorylation level of PERK
and enzymatic activity of CaN increased significantly in Ml compared with control. AGEs exposure further
caused significant elevation of GRP78 expression level, PERK phosphorylation level as well as enzymatic
activity of CaN in myocytes isolated from Ml hearts, which were dramatically decreased by RAGE
antibody administration.

RAGE antibody treatment impaired ER membrane- cytosol
translocation of FKBP12.6 and its disassociation with RyR2

The co-localization of FKBP12.6 and RyR2 was evaluated by calculating the Pearson'’s correlation
coefficients based on analyzing the captured fluorescent images. The coefficients could indicate the
degree of contact between two detected molecules. As demonstrated in Fig. 4a, lowered co-localization
level between FKBP12.5 and RyR2 was found in Ml compared with control. AGEs exposure further
dramatically impaired the co-localization between FKBP12.5 and RyR2 in Ml hearts, which was improved
by RAGE antibody administration. CaN facilitates the disassociation between RyR2 and FKBP12.6 which
would translocate from ER membrane to cytosol. As demonstrated in Fig. 4b, compared with control,
significantly promoted ER membrane- cytosol translocation of FKBP12.6 was found in MI. AGEs
facilitated more ER membrane-to-cytosol translocation of FKBP12.6. The RAGE antibody treatment,
however, reduced the ER membrane-to-cytosol translocation in Ml hearts exposed to AGEs.

Administration of RAGE antibody alleviated calcium releasing by inhibiting RyR2 channel activity in AGEs-
exposed MI hearts

As demonstrated in Fig. 6a, results from [®H}-ryanodine binding assay indicated that the RyR2 channel
activity increased significantly in myocytes isolated from Ml hearts. The AGEs exposure was proved to
further increase the RyR2 channel activity which was reduced by administration of RAGE antibody. The
opening of RyR2 channel would result in calcium releasing from ER which was assessed by calcium
sparks evaluations (Fig. 6b). Compared with control, promoted calcium sparks were found in MI. The
AGEs exposure further promoted calcium sparks in myocytes isolated from Ml hearts. The administration
of RAGE antibody, however, dramatically attenuated calcium sparks in myocytes isolated from Ml hearts
exposed to AGEs.

Discussion
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VAs are critical clinical manifestations of Ml and contribute to the major adverse cardiovascular events
(MACE). Indeed, MI rat model established in this study was characterized by increased amount of VAs.
MACE was reported to be closely associated with AGEs content in high-risk patients with atherosclerotic
cardiovascular diseases [24]. In the present study, our cohort analysis suggested that post-MI PVCs were
more frequent in STEMI patients complicated with diabetes. More importantly, we found that serum AGEs
concentration was significantly and independently associated with post-MI PVCs in STEMI patients.
Thus, AGEs forged in diabetes could be possibly identified as the cause exacerbating post-MI VAs.

AGEs are sets of biochemical byproducts generated by non-enzymatic glycosylations in vivo, contributing
to diabetic complications via interacting with its receptor RAGE located on the targeted cells[25]. As a
member of immunoglobulin superfamily of cell surface receptors, RAGE is a trans-membrane protein
involved in multiple cell functions including proliferation, redox adjustment, inflammation and
migration[25]. An investigation suggesting the correlation between RAGE and VAs aroused our interest:
RAGE knockdown by specific small interfering RNA (siRNA) effectively reduced VAs in cardiac ischemia
and reperfusion model [26]. Moreover, it has been proved that ER stress activation was RAGE- dependent
[27, 28]. Therefore, our hypothesis that AGEs could induce VAs through RAGE- dependent ER stress
activation was formed and further testified in the current study.

Evidenced by GRP78 expression and PERK phosphorylation elevation, ER stress- mediated PERK
signaling was activated in myocytes from Ml rats which exhibited increased post-MI VAs. The AGEs
administration resulted in further elevation of GRP78 expression and PERK phosphorylation, indicating
the hyper-activation of ER stress- mediated PERK signaling in AGEs- exposed Ml rats which were featured
with exacerbated post-MI VAs. Similar to several previous works, we used anti-RAGE IgG; antibody to
block AGEs-RAGE interactions [11]. Evidenced by decreased GRP78 expression and PERK
phosphorylation, RAGE blockage alleviated ER stress- mediated PERK signaling hyper-activation, resulting
in attenuation of post-MI VAs in Ml rats exposed to AGEs. These results indicated that RAGE- dependent
ER stress- mediated PERK signaling played a critical role in exacerbating post-MI VAs after AGEs
exposure. As an ER membrane localized protein, phosphorylated PERK could increase enzymatic activity
of its down-stream effecter CaN by direct contact [6, 10]. CaN would further promote the disassociation
between RyR2 and its inhibitor FKBP12.6 on ER membrane to facilitate RyR2 channel opening [23]. Our
data showed that RAGE blockage reduced CaN activity, leading to impaired disassociation between
FKBP12.6 and RyR2 which was evidenced by reduced ER membrane-to-cytosol translocation behavior of
FKBP12.6. As a result, RyR2 channel activity was compromised.

Calcium released through RyRs from ER raised calcium concentration in subspace between plasma
membrane and ER membrane, which is visualized as calcium sparks. It has been well established that
DADs are mediated by ER calcium release[29]. DADs are voltage oscillations at diastole period causing
triggered activity (TA) which is manifested as arrhythmias, typically PVCs. We found that due to elevated
RyR2 channel activity, calcium sparks were enhanced significantly in a spatio-temporal mannerin
myocytes isolated from MI hearts, which was further boosted by AGEs exposure. The RAGE blockage
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effectively suppressed calcium sparks in myocytes isolated from AGEs-exposed Ml hearts. These results
further supported our theory that AGEs mediated ER RyR2 calcium releasing via RAGE.

Conclusion

Notably, we also found that ER stress was also activated in Ml heart not exposed to AGEs. This
phenomenon we observed was in consistence with the established opinions [30]. We innovatively
reported ER stress was hyper-activated via RAGE/ROS pathway in Ml heart exposed to AGEs which made
Ml individuals more vulnerable to VAs. Our further investigation suggested AGEs-induced hyper-activation
of PERK/CaN/RyR2 signaling was the underlying mechanism of exacerbated VAs. Taken together, to
some extent, the data we acquired in the present study interpreted the clinical scenario that post-Ml VAs
are more frequent in patients with diabetes.

Abbreviations
AGEs advanced glycation end products
Mi myocardial infarction
VAs ventricular arrhythmias
PVCs premature ventricular contractions
STEMI ST segment elevated myocardial infarction
LAD left anterior descending artery
RAGE receptor for AGEs
FKBP12.6  FK506-bindingprotein 12.6
RyR2 ryanodine receptor 2
CaN calcineurin
PERK protein kinase RNA-like ER kinase
GRP78 glucose regulated protein 78
ER endoplasmic reticulum
DADs delayed afterdepolarizations
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Figure 1

a columns indicated the amount of premature ventricular contractions (PVCs) during 24-hour recording in
STEMI patients complicated with or without diabetes. b the correlation analysis between serum AGEs
concentrations and 24-hour PVCs amount in STEMI patients. (n=101)
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Figure 2

a ECG recorded patterns of ventricular arrhythmias in rats. b columns indicated amounts of ventricular
arrhythmias (VAs) during 5-minute recording in rats. (n=10)
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Figure 3

a Demonstrated the immunoblots of GRP78, phosphorylated PERK (p-PERK), PERK and GAPDH in
myocytes isolated from rats. Columns indicated the relative expression levels of GRP78 and
phosphorylation levels of PERK in isolated myocytes. b Columns indicated the detected enzymatic
activity of calcineurin (CaN) in myocytes isolated from rats. (n=6)
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Figure 4

a captured images of immune-fluorescent staining FKBP12.6, RyR2 and DAPI of isolated myocytes.
Columns indicated the quantification of the degree of colocalization of FKBP12.6 and RyR2 by
calculating coefficients analysis. b immunoblots of FKBP12.6, GAPDH and Sigma R1 extracted from
cytoplasmic fraction and ER membrane fraction respectively. Columns below indicated the relative
expression levels of FKBP12.6 in cytolasmic and ER membrane fractions in isolated myocytes. (n=6)
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Figure 5

a The left chart represented the results of [3H]-ryanodine binding assay was conducted in cell lysate from
isolated myocytes. Chart on the right side demonstrated the results of Scatchard analysis of [3H]-
ryanodine binding assay. Equation of each group was indicated. Bmax and dissociation constant (KD)
were calculated according to equation of each group. b Captured images of calcium sparks were
demonstrated. Columns indicated the incidence of calcium sparks, spark amplitude (F/F0), full width at
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half maximum (FWHM) and the full duration of half maximum (FDHM) in isolated myocytes respectively.
(n=6)
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