The aim of this study was to investigate the persistence of SARS-CoV-2 and bacteria on different devices and surfaces after disinfecting measures in two tertiary care ICU subunits that had exclusively treated COVID-19 patients. The main finding of this study is that no SARS-CoV-2 RNA was detected by rtRT-PCR. However, pathogenic bacteria were abounded mainly in sinks and corresponding siphons of the ICUs and enterococci were isolated from two monitors. Gram-positive bacteria were mainly isolated from surfaces (e.g. monitors/keyboards) whereas Gram-negative bacteria were mainly detected in plumbing units.
To date, it has not been clearly established how long and to what extent SARS-CoV-2 RNA contaminates environmental surfaces and devices in hospitals. A recent study has described a low percentage of positive samples in an emergency room and the sub-intensive care ward (11). In another study, almost 57% of rooms treating COVID-19 patients had at least one environmental surface contaminated (12).
In our study, viral RNA was not detectable on any of the swabbed locations of the two ICU subunits, which suggests that conventional disinfection measures are likely sufficient to prevent further spread of the virus. This finding thus might contribute to infection and prevention policies.
Already back in 1974, The Lancet published an article describing isolation of Pseudomonas aeruginosa in hospital sinks (13). Since then, various studies have investigated hospital water supply systems as potential reservoirs for the transmission of pathogenic bacteria in hospitals (14-18).
In line with previous studies (15, 16, 18), we found Pseudomonas aeruginosa in sinks/siphons in both ICUs. Specifically regarding the ICU setting, Zhou et al demonstrated that sink traps may act as an important source of Pseudomonas spp. leading to colonisation or infection of critically ill patients (18). Additionally, stagnant water in general bears a risk for being a reservoir and source of outbreaks with several pathogens (19). This finding highlights the need for constant awareness of possible bacterial reservoirs and the need for further refining cleaning methods in the ICU.
In this line of research it has been suggested that devices applying heat and electromechanical vibration to siphons lead to lower colonisation of patients with multidrug-resistant (MDR) Pseudomonas spp. (16) and that self-disinfecting sinks reduced Pseudomonas spp. bioburden in a pediatric ICU (20), offering possibilities to lower transmission of MDR pathogens. Whether such measures prove feasible and effective in other ICU settings remains to be elucidated in further studies and is beyond the scope of this study. However, no MDR Pseudomonas aeruginosa was detected in our ICUs despite the fact that several patients in the ICU had been colonised with MDR Pseudomonas aeruginosa.
Other cultured bacteria associated with moist environments were Stenotrophomonas maltophilia, Klebsiella oxytoca and Achromobacter spp., all Gram-negative, potentially harmful bacteria. Stenotrophomonas maltophilia is known to cause hospital-acquired infections and is associated with multidrug resistance (21) (22). Klebsiella spp. can be responsible for infectious complications, especially hospital-acquired pneumonias, urinary tract infections or septicemias (23). Furthermore, Achromobacter spp. have been linked to increased risk of morbidity and mortality in critically ill patients in a study reporting a 18 month lasting epidemic in an ICU (24). Additionally, Enterobacter cloacae was cultured from sinks located next to tabletops employed for drug preparation in ICU 1. Enterobacterales (especially carbapenem-resistant strains) are an important cause of healthcare-associated infections and transmission by means of environmental reservoirs, such as therapeutic beds, has been described (25) (26). The colonisation of critically ill patients with carbapenemase-producing Enterobacterales has been associated with an increased length of stay, as well as with a 1.8 higher death hazard ratio as opposed to non-colonised ICU patients (27).
Such findings mandate thorough disinfection of ICUs and surveillance of sinks and siphons as a source for further outbreaks. Water-free ICUs might reduce the risk of nosocomial transmission from bacteria residing in sinks and siphons (28).
Monitors and keyboards are frequently used devices in the everyday care in the ICU. We found Enterococcus faecium on two out of 12 monitors/keyboards in ICU 2, a pathogen known to cause hospital-acquired infections and possibly exhibiting complex resistance patterns, e.g. vancomycin-resistant strains. The failure of disinfection in this case is most likely because of the applied manual disinfection, which is prone to failure. However, we were not able to assess the individual cleaning performance. In a large multicenter, randomised trial, a cleaning bundle (REACH) showed promising results in reducing especially enterococcal infections (29). The implementation of such bundles in ICUs might probably lead to less nosocomial infections in critically ill patients and warrants investigation in further trials.
Coagulase-negative staphylococci were detected in the majority of the swabbed locations. These bacteria are known to be associated with human skin and mucosa and can be a source for infections of foreign bodies or indwelling catheters (30). It remains speculative, whether the finding of these bacteria in the disinfected ICUs has a clinical relevance with regard to the transmission of potentially harmful infections.
The use of the hydrogen peroxide nebulisation technique has been shown to reduce bacterial burden on medical devices (31). In the present study, we did not analyse the effectiveness of this technique as compared to control locations without its use. However, we were not able to culture bacteria in the areas where hydrogen peroxide nebulisation was used. This supports the possible role of hydrogen peroxide as a useful adjunct for ICU disinfection. Another advantage of this technique is the operator-independence.
Strengths of this study are the structured and comprehensive viral/bacterial sampling of different objects and its pragmatic design during COVID-19 pandemics reflecting everyday situations in ICUs with possibly relevant impacts on patient outcomes. Furthermore, the single-blinded study design ensured the investigation of regular cleaning quality.
Our study has several limitations. First, the ICUs were cleaned and disinfected by numerous employees of the ICU department and facility management. As a consequence, different parts of the facilities were probably not cleaned uniformly or in the same intensity. However, this fact reflects daily real-life work processes in hospitals. Second, the investigators could not verify if the objects actually had been cleaned or had been omitted owing to human factors such as overlooking or ignoring.
Third, the analysed objects differed in shape and size, which might have influenced the swabbing technique. Fourth, no cluster-randomisation could be performed between the two ICU subunits due to time-constraints and urgent demand for ICU beds. Finally, due to the dynamic of the pandemic in our hospital, both ICUs were not swabbed and tested as a baseline prior to cleaning and disinfection and the timing of the swabbing was not randomly performed. This should be taken into account in future studies with a similar design.