1 Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: Results from the 2021 National Survey on Drug Use and Health (Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, 2022).
2 Riezzo, I. et al. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem 19, 5624-5646 (2012). https://doi.org:10.2174/092986712803988893
3 Shiels, M. S., Freedman, N. D., Thomas, D. & Berrington de Gonzalez, A. Trends in U.S. Drug Overdose Deaths in Non-Hispanic Black, Hispanic, and Non-Hispanic White Persons, 2000-2015. Ann Intern Med 168, 453-455 (2018). https://doi.org:10.7326/m17-1812
4 Fernàndez-Castillo, N., Cabana-Domínguez, J., Corominas, R. & Cormand, B. Molecular genetics of cocaine use disorders in humans. Mol Psychiatry 27, 624-639 (2022). https://doi.org:10.1038/s41380-021-01256-1
5 Gibney, E. R. & Nolan, C. M. Epigenetics and gene expression. Heredity (Edinb) 105, 4-13 (2010). https://doi.org:10.1038/hdy.2010.54
6 Nestler, E. J. Epigenetic mechanisms of drug addiction. Neuropharmacology 76 Pt B, 259-268 (2014). https://doi.org:10.1016/j.neuropharm.2013.04.004
7 Volkow, Nora D. & Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 162, 712-725 (2015). https://doi.org:https://doi.org/10.1016/j.cell.2015.07.046
8 Malvaez, M. & Wassum, K. M. Regulation of habit formation in the dorsal striatum. Curr Opin Behav Sci 20, 67-74 (2018). https://doi.org:10.1016/j.cobeha.2017.11.005
9 Belin, D. & Everitt, B. J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432-441 (2008). https://doi.org:10.1016/j.neuron.2007.12.019
10 Albertson, D. N. et al. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem 88, 1211-1219 (2004). https://doi.org:10.1046/j.1471-4159.2003.02247.x
11 Zhou, Z., Yuan, Q., Mash, D. C. & Goldman, D. Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc Natl Acad Sci U S A 108, 6626-6631 (2011). https://doi.org:10.1073/pnas.1018514108
12 Mash, D. C. et al. Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS One 2, e1187 (2007). https://doi.org:10.1371/journal.pone.0001187
13 Walker, D. M. et al. Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain's Reward Circuitry. Biol Psychiatry 84, 867-880 (2018). https://doi.org:10.1016/j.biopsych.2018.04.009
14 McClung, C. A. & Nestler, E. J. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci 6, 1208-1215 (2003). https://doi.org:10.1038/nn1143
15 Gao, P., Limpens, J. H., Spijker, S., Vanderschuren, L. J. & Voorn, P. Stable immediate early gene expression patterns in medial prefrontal cortex and striatum after long-term cocaine self-administration. Addict Biol 22, 354-368 (2017). https://doi.org:10.1111/adb.12330
16 Ribeiro, E. A. et al. Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine. Nat Commun 9, 3149 (2018). https://doi.org:10.1038/s41467-018-05657-9
17 Freeman, W. M. et al. Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration. BMC Neurosci 11, 29 (2010). https://doi.org:10.1186/1471-2202-11-29
18 Mews, P. et al. Convergent abnormalities in striatal gene networks in human cocaine use disorder and mouse cocaine administration models. Sci Adv 9, eadd8946 (2023). https://doi.org:10.1126/sciadv.add8946
19 Phillips, R. A., 3rd et al. Distinct subpopulations of D1 medium spiny neurons exhibit unique transcriptional responsiveness to cocaine. Mol Cell Neurosci 125, 103849 (2023). https://doi.org:10.1016/j.mcn.2023.103849
20 Savell, K. E. et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv 6, eaba4221 (2020). https://doi.org:10.1126/sciadv.aba4221
21 Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014-1017 (2004). https://doi.org:10.1126/science.1099020
22 Pohořalá, V., Enkel, T., Bartsch, D., Spanagel, R. & Bernardi, R. E. Sign- and goal-tracking score does not correlate with addiction-like behavior following prolonged cocaine self-administration. Psychopharmacology (Berl) 238, 2335-2346 (2021). https://doi.org:10.1007/s00213-021-05858-z
23 Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e3529 (2021). https://doi.org:10.1016/j.cell.2021.04.048
24 Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat Methods 18, 1333-1341 (2021). https://doi.org:10.1038/s41592-021-01282-5
25 Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 16, 1289-1296 (2019). https://doi.org:10.1038/s41592-019-0619-0
26 Driscoll, M. E., Bollu, P. C. & Tadi, P. Neuroanatomy, nucleus caudate. (2020).
27 Fleck, J. S. et al. Inferring and perturbing cell fate regulomes in human brain organoids. Nature 621, 365-372 (2023). https://doi.org:10.1038/s41586-022-05279-8
28 Wolf, M. E. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 17, 351-365 (2016). https://doi.org:10.1038/nrn.2016.39
29 Mameli, M. et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 12, 1036-1041 (2009). https://doi.org:10.1038/nn.2367
30 Gomes, C. et al. RNA polymerase 1-driven transcription as a mediator of BDNF-induced neurite outgrowth. J Biol Chem 286, 4357-4363 (2011). https://doi.org:10.1074/jbc.M110.170134
31 Leighton, L. J. et al. Experience-dependent neural plasticity, learning, and memory in the era of epitranscriptomics. Genes Brain Behav 17, e12426 (2018). https://doi.org:10.1111/gbb.12426
32 Wang, J. et al. Cocaine Triggers Astrocyte-Mediated Synaptogenesis. Biol Psychiatry 89, 386-397 (2021). https://doi.org:10.1016/j.biopsych.2020.08.012
33 Teague, C. D. & Nestler, E. J. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol Psychiatry 27, 687-709 (2022). https://doi.org:10.1038/s41380-021-01163-5
34 Anderson, A. G. et al. Single nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer's disease-specific cis-regulatory elements. Cell Genom 3 (2023). https://doi.org:10.1016/j.xgen.2023.100263
35 Liddie, S., Anderson, K. L., Paz, A. & Itzhak, Y. The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J Psychopharmacol 26, 1375-1382 (2012). https://doi.org:10.1177/0269881112447991
36 Zhong, P. et al. Phosphodiesterase 4 inhibition impairs cocaine-induced inhibitory synaptic plasticity and conditioned place preference. Neuropsychopharmacology 37, 2377-2387 (2012). https://doi.org:10.1038/npp.2012.93
37 Browne, C. J. et al. Shared and divergent transcriptomic regulation in nucleus accumbens D1 and D2 medium spiny neurons by cocaine and morphine. bioRxiv (2023). https://doi.org:10.1101/2023.09.19.558477
38 Zillich, L. et al. Epigenome-wide association study of alcohol use disorder in five brain regions. Neuropsychopharmacology 47, 832-839 (2022). https://doi.org:10.1038/s41386-021-01228-7
39 Zillich, L. et al. Multi-omics signatures of alcohol use disorder in the dorsal and ventral striatum. Transl Psychiatry 12, 190 (2022). https://doi.org:10.1038/s41398-022-01959-1
40 Evans, S. M. & Foltin, R. W. Does the response to cocaine differ as a function of sex or hormonal status in human and non-human primates? Horm Behav 58, 13-21 (2010). https://doi.org:10.1016/j.yhbeh.2009.08.010
41 Gelernter, J. et al. Genome-wide association study of cocaine dependence and related traits: FAM53B identified as a risk gene. Mol Psychiatry 19, 717-723 (2014). https://doi.org:10.1038/mp.2013.99
42 Meyer, T. D., Godfrey, C. J. & Walss-Bass, C. The UT health Psychological Autopsy Interview Schedule (UTH- PAIS) - Description and reliability of diagnoses and transdiagnostic personality measures. J Psychiatr Res 156, 221-227 (2022). https://doi.org:10.1016/j.jpsychires.2022.10.014
43 Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137 (2008). https://doi.org:10.1186/gb-2008-9-9-r137
44 Brenner, E. et al. Single cell transcriptome profiling of the human alcohol-dependent brain. Hum Mol Genet 29, 1144-1153 (2020). https://doi.org:10.1093/hmg/ddaa038
45 Shen, E. H., Overly, C. C. & Jones, A. R. The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci 35, 711-714 (2012). https://doi.org:10.1016/j.tins.2012.09.005
46 Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015). https://doi.org:10.1126/science.1260419
47 Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847-2849 (2016). https://doi.org:10.1093/bioinformatics/btw313
48 Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938-2940 (2017). https://doi.org:10.1093/bioinformatics/btx364
49 Wang, Q. et al. Exploring Epigenomic Datasets by ChIPseeker. Curr Protoc 2, e585 (2022). https://doi.org:10.1002/cpz1.585
50 Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2, 100141 (2021). https://doi.org:10.1016/j.xinn.2021.100141
51 Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods 14, 975-978 (2017). https://doi.org:10.1038/nmeth.4401
52 Cannon, M. et al. DGIdb 5.0: rebuilding the drug-gene interaction database for precision medicine and drug discovery platforms. Nucleic Acids Res 52, D1227-d1235 (2024). https://doi.org:10.1093/nar/gkad1040
53 Argelaguet, R. et al. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol 14 (2018). https://doi.org:10.15252/msb.20178124
54 Cahill, K. M., Huo, Z., Tseng, G. C., Logan, R. W. & Seney, M. L. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci Rep 8, 9588 (2018). https://doi.org:10.1038/s41598-018-27903-2
55 Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci 21, 1656-1669 (2018). https://doi.org:10.1038/s41593-018-0275-1
56 Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032-1045 (2020). https://doi.org:10.1016/s2215-0366(20)30339-4
57 Polimanti, R. et al. Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. Mol Psychiatry 25, 1673-1687 (2020). https://doi.org:10.1038/s41380-020-0677-9
58 de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11, e1004219 (2015). https://doi.org:10.1371/journal.pcbi.1004219
59 Spanagel, R. et al. The ReCoDe addiction research consortium: Losing and regaining control over drug intake-Findings and future perspectives. Addict Biol 29, e13419 (2024). https://doi.org:10.1111/adb.13419