1 Arshad M, Hussain T, Iqbal M, Abbas M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Braz J Microbiol. 2017; 48: 403-409.
2 Nikolaou A, Kourkoutas Y. Exploitation of olive oil mill wastewaters and molasses for ethanol production using immobilized cells of Saccharomyces cerevisiae. Environ Sci Pollut Res Int. 2018; 25: 7401-7408.
3 Xu W, Liang L, Song Z, Zhu M. Continuous ethanol production from sugarcane molasses using a newly designed combined bioreactor system by immobilized Saccharomyces cerevisiae. Biotechnol Appl Biochem. 2014 (3); 61: 289-296.
4 Yu N, Tan L, Sun ZY, Tang YQ, Kida K. Production of bio-ethanol by integrating microwave-assisted dilute sulfuric acid pretreated sugarcane bagasse slurry with molasses. Appl Biochem Biotechnol. 2018; 185: 191-206.
5 Fan M, Zhang S, Ye G, Zhang H, Xie J. Integrating sugarcane molasses into sequential cellulosic biofuel production based on SSF process of high solid loading. Biotechnol Biofuels. 2018; 11: 329.
6 Tang YQ, An MZ, Zhong YL, Shigeru M, Wu XL, Kida K. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. J Biosci Bioeng. 2010; 109: 41-46.
7 Yin FW, Zhu SY, Guo DS, Ren LJ, Ji XJ, Huang H, Gao Z. Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue. Bioresour Technol. 2019; 271: 118-124.
8 Lino FSO, Basso TO, Sommer MOA. A synthetic medium to simulate sugarcane molasses. Biotechnol Biofuels. 2018; 11: 221.
9 Jagtap RS, Mahajan DM, Mistry SR, Bilaiya M, Singh RK, Jain R. Improving ethanol yields in sugarcane molasses fermentation by engineering the high osmolarity glycerol pathway while maintaining osmotolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2019; 103: 1031-1042.
10 Mirończuk AM, Rakicka M, Biegalska A, Rymowicz W, Dobrowolski A. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresour Technol. 2015; 198: 445-455.
11 Shen Q, Lin H, Wang Q, Fan X, Yang Y, Zhao Y. Sweetpotato vines hydrolysate promotes single cell oils production of Trichosporon fermentans in high-density molasses fermentation. Bioresour Technol. 2015; 176: 249-256.
12 Pradeep P, Reddy OV. High gravity fermentation of sugarcane molasses to produce ethanol: Effect of nutrients. Indian J Microbiol. 2010; 50: 82-87.
13 Arshad M, Khan ZM, Khalilur-Rehman Shah FA, Rajoka MI. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett Appl Microbiol. 2008; 47: 410-414.
14 Goswami M, Meena S, Navatha S, Prasanna Rani KN, Pandey A, Sukumaran RK, Prasad RB, Prabhavathi Devi BL. Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol. Bioresour Technol. 2015; 188: 99-102.
15 Wu M, Song M, Liu M, Jiang C, Li Z. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence. Sci Rep. 2016; 6: 32858.
16 Zhao Y, Xing H, Li X, Geng S, Ning D, Ma T, Yu X. Physiological and metabolomics analyses reveal the roles of fulvic acid in enhancing the production of astaxanthin and lipids in Haematococcus pluvialis under abiotic stress conditions. J Agric Food Chem. 2019; 67: 12599-12609.
17 Rashid I, Murtaza G, Zahir ZA, Farooq M. Effect of humic and fulvic acid transformation on cadmium availability to wheat cultivars in sewage sludge amended soil. Environ Sci Pollut Res Int. 2018; 25: 16071-16079.
18 Wang Y, Yang R, Zheng J, Shen Z, Xu X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol Environ Saf. 2019; 167: 10-19.
19 Xu D, Deng Y, Xi P, Yu G, Wang Q, Zeng Q, Jiang Z, Gao L. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chem. 2019; 286: 226-233.
20 Gao W, He Y, Zhang F, Zhao F, Huang C, Zhang Y, Zhao Q, Wang S, Yang C. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synthesis. Microb Biotechnol. 2019; 12: 932-945.
21 Sirisansaneeyakul S, Cao M, Kongklom N, Chuensangjun C, Shi Z, Chisti Y. Microbial production of poly-γ-glutamic acid. World J Microbiol Biotechnol. 2017; 33: 173.
22 Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microb Cell Fact. 2017; 16: 88.
23 Zhang L, Yang X, Gao D, Wang L, Li J, Wei Z, Shi Y. Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Sci Rep. 2017; 7: 6090.
24 Peng G, Zhao X, Li Y, Wang R, Huang Y, Qi G. Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol Res. 2019; 227: 126297.
25 Álvarez-Cao ME, Cerdán ME, González-Siso MI, Becerra M. Bioconversion of beet molasses to alpha-galactosidase and ethanol. Front Microbiol. 2019; 10: 405.
26 Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S. Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels. 2016; 9: 134.
27 Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I. Poly-γ-glutamic acid: production, properties and applications. Microbiology 2015; 161: 1-17.
28 Lei P, Pang X, Feng X, Li S, Chi B, Wang R, Xu Z, Xu H. The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L. seedlings by activating crosstalk between H2O2 and Ca2+. Sci Rep. 2017; 7: 41618.
29 Wang ZP, Wang QQ, Liu S, Liu XF, Yu XJ, Jiang YL. Efficient conversion of cane molasses towards high-purity isomaltulose and cellular lipid using an engineered Yarrowia lipolytica strain in fed-batch rermentation. Molecules 2019; 24: 1228.
30 Halmschlag B, Steurer X, Putri SP, Fukusaki E, Blank LM. Tailor-made poly-γ-glutamic acid production. Metab Eng. 2019; 55: 239-248.
31 Xu G, Zha J, Cheng H, Ibrahim MHA, Yang F, Dalton H, Cao R, Zhu Y, Fang J, Chi K, Zheng P, Zhang X, Shi J, Xu Z, Gross RA, Koffas MAG. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Metab Eng. 2019; 56: 39-49.
32 Wang L, Wang N, Mi D, Luo Y, Guo J. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum. J Microbiol. 2017; 55: 554-560.
33 Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS 3rd, Ryu CM. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol. 2011; 77: 1548-55.
34 Jiang S, Fan L, Zhao M, Qiu Y, Zhao L. Enhanced low molecular weight poly-γ-glutamic acid production in recombinant Bacillus subtilis 1A751 with zinc ion. Appl Biochem Biotechnol. 2019; 189: 411-423.
35 Chen B, Wen J, Zhao X, Ding J, Qi G. Surfactin: A quorum-sensing signal molecule to relieve CCR in Bacillus amyloliquefaciens. Front Microbiol. 2020; 11: 631.
36 González M, Gomez E, Comese R, Quesada M, Conti M. Influence of organic amendments on soil quality potential indicators in an urban horticultural system. Bioresour Technol. 2010; 101: 8897-8901.
37 Sha Y, Zhang Y, Qiu Y, Xu Z, Li S, Feng X, Wang M, Xu H. Efficient biosynthesis of low-molecular-weight poly-γ-glutamic acid by stable overexpression of PgdS hydrolase in Bacillus amyloliquefaciens NB. J Agric Food Chem. 2019; 67: 282-290.