References:
[1] A.F. Gazdar, P.A. Bunn, J.D. Minna, Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer 17 (2017) 725-737.
[2] J.K. Sabari, B.H. Lok, J.H. Laird, J.T. Poirier, C.M. Rudin, Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol 14 (2017) 549-561.
[3] M.C. Pietanza, L.A. Byers, J.D. Minna, C.M. Rudin, Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res 21 (2015) 2244-55.
[4] L. Horn, A.S. Mansfield, A. Szczesna, L. Havel, M. Krzakowski, M.J. Hochmair, et al., First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N Engl J Med 379 (2018) 2220-2229.
[5] S.B. Baylin, P.A. Jones, Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol 8 (2016).
[6] B.S. Mann, J.R. Johnson, M.H. Cohen, R. Justice, R. Pazdur, FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12 (2007) 1247-52.
[7] C. Grant, F. Rahman, R. Piekarz, C. Peer, R. Frye, R.W. Robey, et al., Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther 10 (2010) 997-1008.
[8] A. Sawas, D. Radeski, O.A. O'Connor, Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review. Ther Adv Hematol 6 (2015) 202-8.
[9] D. Moore, Panobinostat (Farydak): A Novel Option for the Treatment of Relapsed Or Relapsed and Refractory Multiple Myeloma. P T 41 (2016) 296-300.
[10] Y. Zhang, M. Adachi, X. Zhao, R. Kawamura, K. Imai, Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino- methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int J Cancer 110 (2004) 301-8.
[11] S. Doi, H. Soda, M. Oka, J. Tsurutani, T. Kitazaki, Y. Nakamura, et al., The histone deacetylase inhibitor FR901228 induces caspase-dependent apoptosis via the mitochondrial pathway in small cell lung cancer cells. Mol Cancer Ther 3 (2004) 1397-402.
[12] M.C. Crisanti, A.F. Wallace, V. Kapoor, F. Vandermeers, M.L. Dowling, L.P. Pereira, et al., The HDAC inhibitor panobinostat (LBH589) inhibits mesothelioma and lung cancer cells in vitro and in vivo with particular efficacy for small cell lung cancer. Mol Cancer Ther 8 (2009) 2221-31.
[13] K. Ha, W. Fiskus, D.S. Choi, S. Bhaskara, L. Cerchietti, S.G. Devaraj, et al., Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget 5 (2014) 5637-50.
[14] S. Umemura, S. Mimaki, H. Makinoshima, S. Tada, G. Ishii, H. Ohmatsu, et al., Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. J Thorac Oncol 9 (2014) 1324-31.
[15] J.S. Ross, K. Wang, O.R. Elkadi, A. Tarasen, L. Foulke, C.E. Sheehan, et al., Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer. J Clin Pathol 67 (2014) 772-6.
[16] J. George, J.S. Lim, S.J. Jang, Y. Cun, L. Ozretic, G. Kong, et al., Comprehensive genomic profiles of small cell lung cancer. Nature 524 (2015) 47-53.
[17] B. Hong, H. Wang, K. Deng, W. Wang, H. Dai, L.V. Yan, et al., Combination treatment of RAD001 and BEZ235 exhibits synergistic antitumor activity via down-regulation of p-4E-BP1/Mcl-1 in small cell lung cancer. Oncotarget 8 (2017) 106486-106498.
[18] H. Makinoshima, S. Umemura, A. Suzuki, H. Nakanishi, A. Maruyama, H. Udagawa, et al., Metabolic Determinants of Sensitivity to Phosphatidylinositol 3-Kinase Pathway Inhibitor in Small-Cell Lung Carcinoma. Cancer Res 78 (2018) 2179-2190.
[19] M. Mosleh, A. Safaroghli-Azar, D. Bashash, Pan-HDAC inhibitor panobinostat, as a single agent or in combination with PI3K inhibitor, induces apoptosis in APL cells: An emerging approach to overcome MSC-induced resistance. Int J Biochem Cell Biol 122 (2020) 105734.
[20] Y. Pei, K.W. Liu, J. Wang, A. Garancher, R. Tao, L.A. Esparza, et al., HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma. Cancer Cell 29 (2016) 311-323.
[21] K. Sun, R. Atoyan, M.A. Borek, S. Dellarocca, M.E. Samson, A.W. Ma, et al., Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers. Mol Cancer Ther 16 (2017) 285-299.
[22] S. Kotian, L. Zhang, M. Boufraqech, K. Gaskins, S.K. Gara, M. Quezado, et al., Dual Inhibition of HDAC and Tyrosine Kinase Signaling Pathways with CUDC-907 Inhibits Thyroid Cancer Growth and Metastases. Clin Cancer Res 23 (2017) 5044-5054.
[23] L.A. Byers, J. Wang, M.B. Nilsson, J. Fujimoto, P. Saintigny, J. Yordy, et al., Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2 (2012) 798-811.
[24] R.J. Cardnell, L.A. Byers, Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer--response. Clin Cancer Res 20 (2014) 2237.
[25] X. Liu, W. Wang, Y. Yin, M. Li, H. Li, H. Xiang, et al., A high-throughput drug screen identifies auranofin as a potential sensitizer of cisplatin in small cell lung cancer. Invest New Drugs 37 (2019) 1166-1176.
[26] X. Bian, J. Gao, F. Luo, C. Rui, T. Zheng, D. Wang, et al., PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene 37 (2018) 341-351.
[27] W. Lin, J.M. Francis, H. Li, X. Gao, C.S. Pedamallu, P. Ernst, et al., Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets. Cancer Biol Ther 17 (2016) 1274-1281.
[28] S.V. Hegarty, K.L. Togher, E. O'Leary, F. Solger, A.M. Sullivan, G.W. O'Keeffe, Romidepsin induces caspase-dependent cell death in human neuroblastoma cells. Neurosci Lett 653 (2017) 12-18.
[29] S. Umemura, S. Mimaki, H. Makinoshima, S. Tada, G. Ishii, H. Ohmatsu, et al., Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. J Thorac Oncol 9 (2014) 1324-31.
[30] J.S. Ross, K. Wang, O.R. Elkadi, A. Tarasen, L. Foulke, C.E. Sheehan, et al., Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer. J Clin Pathol 67 (2014) 772-6.
[31] B. Hong, H. Wang, K. Deng, W. Wang, H. Dai, L.V. Yan, et al., Combination treatment of RAD001 and BEZ235 exhibits synergistic antitumor activity via down-regulation of p-4E-BP1/Mcl-1 in small cell lung cancer. Oncotarget 8 (2017) 106486-106498.
[32] A. Tarhini, A. Kotsakis, W. Gooding, Y. Shuai, D. Petro, D. Friedland, et al., Phase II study of everolimus (RAD001) in previously treated small cell lung cancer. Clin Cancer Res 16 (2010) 5900-7.
[33] S. Pal, D. Kozono, X. Yang, W. Fendler, W. Fitts, J. Ni, et al., Dual HDAC and PI3K Inhibition Abrogates NFkappaB- and FOXM1-Mediated DNA Damage Response to Radiosensitize
[34] K.R. Luoto, A.X. Meng, A.R. Wasylishen, H. Zhao, C.L. Coackley, L.Z. Penn, et al., Tumor cell kill by c-MYC depletion: role of MYC-regulated genes that control DNA double-strand break repair. Cancer Res 70 (2010) 8748-59.