In this paper, the propagation properties of a vortex cosh-Gaussian beam (vChGB) in turbulent atmosphere are investigated. Based on the extended Huygens–Fresnel diffraction integral and the Rytov method, the analytical expression for the average intensity of the vChGB propagating in the atmospheric turbulence is derived. The effects of the turbulent strength and the beam parameters on the intensity distribution and the beam spreading are illustrated numerically and analyzed in detail. It is shown that upon propagating, the incident vChGB keeps its initial hollow dark profile within a certain propagation distance, then the field loses gradually its central hole-intensity and transformed into a Gaussian–like beam for large propagation distance. The rising speed of the central peak is demonstrated to be faster when the constant strength turbulence or the wavelength are larger and the Gaussian width is smaller. The obtained results can be beneficial for applications in optical communications and remote sensing.