1.Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal Cell Death. Physiol Rev 98 (2):813-880. https://doi.org/10.1152/physrev.00011.2017
2.Zhang Y, Xie H, Tang W, Zeng X, Lin Y, Xu L, Xiao L, Xu J, Wu Z, Yuan D (2019) Trichostatin A, a Histone Deacetylase Inhibitor, Alleviates Eosinophilic Meningitis Induced by Angiostrongylus cantonensis Infection in Mice. Frontiers in microbiology 10:2280. https://doi.org/10.3389/fmicb.2019.02280
3.Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20 (1):19-33. https://doi.org/10.1038/s41583-018-0093-1
4.Clark IA, Vissel B (2018) Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, alpha-synuclein, amyloid-beta and insulin resistance in neurodegenerative diseases. Br J Pharmacol 175 (20):3859-3875. https://doi.org/10.1111/bph.14471
5.Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541 (7638):481-487. https://doi.org/10.1038/nature21029
6.Chou RC, Kane M, Ghimire S, Gautam S, Gui J (2016) Treatment for Rheumatoid Arthritis and Risk of Alzheimer's Disease: A Nested Case-Control Analysis. CNS Drugs 30 (11):1111-1120. https://doi.org/10.1007/s40263-016-0374-z
7.Mittal S, Bjornevik K, Im DS, Flierl A, Dong X, Locascio JJ, Abo KM, Long E, Jin M, Xu B, Xiang YK, Rochet JC, Engeland A, Rizzu P, Heutink P, Bartels T, Selkoe DJ, Caldarone BJ, Glicksman MA, Khurana V, Schule B, Park DS, Riise T, Scherzer CR (2017) beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson's disease. Science 357 (6354):891-898. https://doi.org/10.1126/science.aaf3934
8.Peter I, Dubinsky M, Bressman S, Park A, Lu C, Chen N, Wang A (2018) Anti-Tumor Necrosis Factor Therapy and Incidence of Parkinson Disease Among Patients With Inflammatory Bowel Disease. JAMA Neurol 75 (8):939-946. https://doi.org/10.1001/jamaneurol.2018.0605
9.Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, Fisher A, Lane R, Young GR, Kassiotis G, Kaiser WJ, Pasparakis M (2020) Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580 (7803):391-395. https://doi.org/10.1038/s41586-020-2129-8
10.Kesavardhana S, Kanneganti TD (2020) ZBP1: A STARGTE to decode the biology of Z-nucleic acids in disease. J Exp Med 217 (7). https://doi.org/10.1084/jem.20200885
11.Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE, Neale G, Vogel P, Kanneganti TD (2016) ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol 1 (2). https://doi.org/10.1126/sciimmunol.aag2045
12.Zheng M, Karki R, Vogel P, Kanneganti TD (2020) Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense. Cell 181 (3):674-687 e613. https://doi.org/10.1016/j.cell.2020.03.040
13.Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K, Ohba Y, Taniguchi T (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448 (7152):501-505. https://doi.org/10.1038/nature06013
14.Kim K, Khayrutdinov BI, Lee CK, Cheong HK, Kang SW, Park H, Lee S, Kim YG, Jee J, Rich A, Kim KK, Jeon YH (2011) Solution structure of the Zbeta domain of human DNA-dependent activator of IFN-regulatory factors and its binding modes to B- and Z-DNAs. Proceedings of the National Academy of Sciences of the United States of America 108 (17):6921-6926. https://doi.org/10.1073/pnas.1014898107
15.Wang Y, Hao Q, Florence JM, Jung BG, Kurdowska AK, Samten B, Idell S, Tang H (2019) Influenza Virus Infection Induces ZBP1 Expression and Necroptosis in Mouse Lungs. Frontiers in cellular and infection microbiology 9:286. https://doi.org/10.3389/fcimb.2019.00286
16.Yang D, Liang Y, Zhao S, Ding Y, Zhuang Q, Shi Q, Ai T, Wu SQ, Han J (2020) ZBP1 mediates interferon-induced necroptosis. Cell Mol Immunol 17 (4):356-368. https://doi.org/10.1038/s41423-019-0237-x
17.Daniels BP, Kofman SB, Smith JR, Norris GT, Snyder AG, Kolb JP, Gao X, Locasale JW, Martinez J, Gale M, Jr., Loo YM, Oberst A (2019) The Nucleotide Sensor ZBP1 and Kinase RIPK3 Induce the Enzyme IRG1 to Promote an Antiviral Metabolic State in Neurons. Immunity 50 (1):64-76 e64. https://doi.org/10.1016/j.immuni.2018.11.017
18.Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N, Kundig TM, Amakawa R, Kishihara K, Wakeham A, et al. (1993) Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75 (1):83-97
19.Yarilina A, Park-Min KH, Antoniv T, Hu X, Ivashkiv LB (2008) TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nature immunology 9 (4):378-387. https://doi.org/10.1038/ni1576
20.Venkatesh D, Ernandez T, Rosetti F, Batal I, Cullere X, Luscinskas FW, Zhang Y, Stavrakis G, Garcia-Cardena G, Horwitz BH, Mayadas TN (2013) Endothelial TNF receptor 2 induces IRF1 transcription factor-dependent interferon-beta autocrine signaling to promote monocyte recruitment. Immunity 38 (5):1025-1037. https://doi.org/10.1016/j.immuni.2013.01.012
21.Tanaka N, Ishihara M, Kitagawa M, Harada H, Kimura T, Matsuyama T, Lamphier MS, Aizawa S, Mak TW, Taniguchi T (1994) Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77 (6):829-839. https://doi.org/10.1016/0092-8674(94)90132-5
22.Kuriakose T, Zheng M, Neale G, Kanneganti TD (2018) IRF1 Is a Transcriptional Regulator of ZBP1 Promoting NLRP3 Inflammasome Activation and Cell Death during Influenza Virus Infection. Journal of immunology (Baltimore, Md : 1950) 200 (4):1489-1495. https://doi.org/10.4049/jimmunol.1701538
23.Pearson JS, Giogha C, Muhlen S, Nachbur U, Pham CL, Zhang Y, Hildebrand JM, Oates CV, Lung TW, Ingle D, Dagley LF, Bankovacki A, Petrie EJ, Schroeder GN, Crepin VF, Frankel G, Masters SL, Vince J, Murphy JM, Sunde M, Webb AI, Silke J, Hartland EL (2017) EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat Microbiol 2:16258. https://doi.org/10.1038/nmicrobiol.2016.258
24.Tamura T, Ishihara M, Lamphier MS, Tanaka N, Oishi I, Aizawa S, Matsuyama T, Mak TW, Taki S, Taniguchi T (1997) DNA damage-induced apoptosis and Ice gene induction in mitogenically activated T lymphocytes require IRF-1. Leukemia 11 Suppl 3:439-440
25.Bowie ML, Dietze EC, Delrow J, Bean GR, Troch MM, Marjoram RJ, Seewaldt VL (2004) Interferon-regulatory factor-1 is critical for tamoxifen-mediated apoptosis in human mammary epithelial cells. Oncogene 23 (54):8743-8755. https://doi.org/10.1038/sj.onc.1208120
26.Ruiz-Ruiz C, Ruiz de Almodovar C, Rodriguez A, Ortiz-Ferron G, Redondo JM, Lopez-Rivas A (2004) The up-regulation of human caspase-8 by interferon-gamma in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1. The Journal of biological chemistry 279 (19):19712-19720. https://doi.org/10.1074/jbc.M313023200
27.Chow WA, Fang JJ, Yee JK (2000) The IFN regulatory factor family participates in regulation of Fas ligand gene expression in T cells. Journal of immunology (Baltimore, Md : 1950) 164 (7):3512-3518. https://doi.org/10.4049/jimmunol.164.7.3512
28.Clarke N, Jimenez-Lara AM, Voltz E, Gronemeyer H (2004) Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J 23 (15):3051-3060. https://doi.org/10.1038/sj.emboj.7600302
29.Gao J, Senthil M, Ren B, Yan J, Xing Q, Yu J, Zhang L, Yim JH (2010) IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell death and differentiation 17 (4):699-709. https://doi.org/10.1038/cdd.2009.156
30.Zhao J, Chen C, Xiao JR, Wei HF, Zhou XH, Mao XX, Zhang WD, Qian R, Chen XL, He MQ, Yu XW, Zhao J (2015) An Up-regulation of IRF-1 After a Spinal Cord Injury: Implications for Neuronal Apoptosis. J Mol Neurosci 57 (4):595-604. https://doi.org/10.1007/s12031-015-0642-2
31.Wei J, Wu F, He A, Zeng X, Ouyang LS, Liu MS, Zheng HQ, Lei WL, Wu ZD, Lv ZY (2015) Microglia activation: one of the checkpoints in the CNS inflammation caused by Angiostrongylus cantonensis infection in rodent model. Parasitol Res 114 (9):3247-3254. https://doi.org/10.1007/s00436-015-4541-9
32.Mengying Z, Yiyue X, Tong P, Yue H, Limpanont Y, Ping H, Okanurak K, Yanqi W, Dekumyoy P, Hongli Z, Watthanakulpanich D, Zhongdao W, Zhi W, Zhiyue L (2017) Apoptosis and necroptosis of mouse hippocampal and parenchymal astrocytes, microglia and neurons caused by Angiostrongylus cantonensis infection. Parasit Vectors 10 (1):611. https://doi.org/10.1186/s13071-017-2565-y
33.Li Y, Li L, Chen M, Yu X, Gu Z, Qiu H, Qin G, Long Q, Fu X, Liu T, Li W, Huang W, Shi D, Kang T, Luo M, Wu X, Deng W (2018) MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation. Mol Oncol 12 (3):391-405. https://doi.org/10.1002/1878-0261.12173
34.McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. https://doi.org/10.1186/1742-2094-5-45
35.D'Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43 (6):582-592. https://doi.org/10.1002/cbin.11137
36.Shi J, Gao W, Shao F (2017) Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci 42 (4):245-254. https://doi.org/10.1016/j.tibs.2016.10.004
37.Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12 (1):34. https://doi.org/10.1186/s13045-019-0720-y
38.Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith MA, Perry G, Godman GC, Nawroth P, et al. (1995) Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med 1 (7):693-699. https://doi.org/10.1038/nm0795-693
39.Smith MA, Siedlak SL, Richey PL, Mulvihill P, Ghiso J, Frangione B, Tagliavini F, Giaccone G, Bugiani O, Praprotnik D, et al. (1995) Tau protein directly interacts with the amyloid beta-protein precursor: implications for Alzheimer's disease. Nat Med 1 (4):365-369. https://doi.org/10.1038/nm0495-365
40.Love R (2001) Untangling the relation between beta-amyloid and tau. Lancet 358 (9282):645. https://doi.org/10.1016/S0140-6736(01)05825-1
41.Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325 (5938):332-336. https://doi.org/10.1126/science.1172308
42.Cavanagh C, Tse YC, Nguyen HB, Krantic S, Breitner JC, Quirion R, Wong TP (2016) Inhibiting tumor necrosis factor-alpha before amyloidosis prevents synaptic deficits in an Alzheimer's disease model. Neurobiol Aging 47:41-49. https://doi.org/10.1016/j.neurobiolaging.2016.07.009
43.Kuriakose T, Kanneganti TD (2018) ZBP1: Innate Sensor Regulating Cell Death and Inflammation. Trends Immunol 39 (2):123-134. https://doi.org/10.1016/j.it.2017.11.002
44.Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, Tamura T, Takaoka A, Nishikura K, Taniguchi T (2008) Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci U S A 105 (14):5477-5482. https://doi.org/10.1073/pnas.0801295105
45.Kesavardhana S, Kuriakose T, Guy CS, Samir P, Malireddi RKS, Mishra A, Kanneganti TD (2017) ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. J Exp Med 214 (8):2217-2229. https://doi.org/10.1084/jem.20170550
46.Frank T, Tuppi M, Hugle M, Dotsch V, van Wijk SJL, Fulda S (2019) Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ 26 (10):2046-2060. https://doi.org/10.1038/s41418-019-0298-5