In this study, five layers of hexagonal cladding and two elliptical air holes based on photonic crystal fiber are discussed highly for many communication areas by decreasing different types of losses such as effective material loss (EML), scattering loss, and confinement loss in the terahertz (THz) waveguiding. Our suggested fiber (H-PCF) and all simulation results are obtained with the finite element method (FEM) and the perfectly matched layer (PML) boundary conditions based COMSOL Multiphysics software have been used to design in the THz region. After investigating all the graphical results, this optical communication-related H-PCF fiber discloses an extremely low effective material loss (EML) of 0.0184 cm−1, with an effective area of 7.07×10-8 m2 and flow of power in the core region of 88% at 1 terahertz (THz). Here, other simulation parameters such as confinement loss, scattering loss, and V-parameter are also presented with a proper graph. So, we can easily say that the reported H-PCF fiber is strongly appropriate for different types of short and long-distance communication applications in the terahertz (THz) wave pulse region.