[1] Thieme K, Avramov I, Ruessel C. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses. Sci Rep 2016, 6: 1-16.
[2] Gaddam A, Fernandes HR, Tulyaganov DU, et al. Role of manganese on the structure, crystallization and sintering of non-stoichiometric lithium disilicate glasses. Rsc Adv 2014, 4: 13581-13592.
[3] Zhao T, Qin Y, Wang B, et al. Improved densification and properties of pressureless-sintered lithium disilicate glass-ceramics. Mat Sci Eng A-Struct 2015, 620: 399-406.
[4] Wang F, Gao J, Wang H, et al. Flexural strength and translucent characteristics of lithium disilicate glassceramics with different P2O5 content. Mater Des 2010, 31: 3270-3274.
[5] Huang SF, Li Y, Wei SH, et al. A novel high-strength lithium disilicate glass-ceramic featuring a highly intertwined microstructure. J Eur Ceram Soc 2017, 37: 1083-1094.
[6] Lien W, Roberts HW, Plate JA, et al. Microstructural evolution and physical behavior of a lithium disilicate glass-ceramic. Dent Mater 2015, 31: 928-940.
[7] Zhang F, Reveron H, Spies BC, et al. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater 2019, 91: 24-34.
[8] Tinschert J, Natt G, Mautsch W, et al. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: A laboratory study. Int J Prosthodont 2001, 14: 231-238.
[9] Harada K, Raigrodski AJ, Chung KH, et al. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J Prosthet Dent 2016, 116: 257-263.
[10] Huang X, Zheng X, Zhao G, et al. Microstructure and mechanical properties of zirconia-toughened lithium disilicate glass-ceramic composites. Mater Chem Phys 2014, 143: 845-852.
[11] Thieme K, Ruessel C. Nucleation and growth kinetics and phase analysis in zirconia-containing lithium disilicate glass. J Mater Sci 2015, 50: 1488-1499.
[12] Schweiger M, Frank M, Von Clausbruch SC, et al. Microstructure and properties of a composite system for dental applications composed of glass-ceramics in the SiO2-Li2O-ZrO2-P2O5 system and ZrO2-ceramic (TZP). J Mater Sci 1999, 34: 4563-4572.
[13] Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater 2016, 32: 908-914.
[14] Bergamo ETP, Bordin D, Ramalho IS, et al. Zirconia-reinforced lithium silicate crowns: Effect of thickness on survival and failure mode. Dent Mater 2019, 35: 1007-1016.
[15] Zhang NZ, Anusavice KJ. Effect of alumina on the strength, fracture toughness, and crystal structure of fluorcanasite glass-ceramics. J Am Ceram Soc 1999, 82: 2509-2513.
[16] Tzeng JM, Duh JG, Chung KH, et al. Al2O3-modified and ZrO2-modified dental glass-ceramics. J Mater Sci 1993, 28: 6127-6135.
[17] Guazzato M, Albakry M, Ringer SP, et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004, 20: 441-448.
[18] Kotoul M, Pokluda J, Sandera P, et al. Toughening effects quantification in glass matrix composite reinforced by alumina platelets. Acta Mater 2008, 56: 2908-2918.
[19] Xia L, Wang XY, Wen GW, et al. Influence of brick pattern interface structure on mechanical properties of continuous carbon fiber reinforced lithium aluminosilicate glass-ceramics matrix composites. J Eur Ceram Soc 2012, 32: 409-418.
[20] Sarno RD, Tomozawa M. Toughening mechanisms for a zirconia-lithium aluminosilicate glass-ceramic. J Mater Sci 1995, 30: 4380-4388.
[21] Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative translucency of six all-ceramic systems. Part II: Core and veneer materials. J Prosthet Dent 2002, 88: 10-15.
[22] Gonzaga CC, Okada CY, Cesar PF, et al. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics. Dent Mater 2009, 25: 1293-1301.
[23] Wen G, Zheng X, Song L. Effects of P2O5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics. Acta Mater 2007, 55: 3583-3591.
[24] Denry IL, Holloway JA. Effect of post-processing heat treatment on the fracture strength of a heat-pressed dental ceramic. J Biomed Mater Res B 2004, 68B: 174-179.
[25] Albakry M, Guazzato M, Swain MV. Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics. J Biomed Mater Res B 2004, 71B: 99-107.
[26] Yuan K, Wang F, Gao J, et al. Effect of zircon-based tricolor pigments on the color, microstructure, flexural strength and translucency of a novel dental lithium disilicate glass-ceramic. J Biomed Mater Res B 2014, 102: 98-107.
[27] Yuan K, Wang F, Gao J, et al. Effect of sintering time on the microstructure, flexural strength and translucency of lithium disilicate glass-ceramics. J Non-Cryst Solids 2013, 362: 7-13.
[28] Shan ZJ, Liu JX, Shi F, et al. A new strengthening theory for improving the fracture strength of lithium disilicate glass-ceramics by introducing Rb or Cs ions. J Non-Cryst Solids 2018, 481: 479-485.
[29] Shan ZJ, Liu JX, Liu M, et al. Surface strengthening of lithium disilicate glass-ceramic by ion-exchange using Rb, Cs nitrates. Ceram Int 2018, 44: 12466-12471.
[30] Zheng X, Wen G, Song L, et al. Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics. Acta Mater 2008, 56: 549-558.
[31] Molla AR, Chakradhar RPS, Kesavulu CR, et al. Microstructure, mechanical, EPR and optical properties of lithium disilicate glasses and glass-ceramics doped with Mn2+ ions. J Alloy Compd 2012, 512: 105-114.
[32] Thompson JY, Anusavice KJ, Balasubramaniam B, et al. Effect of microcracking on the fracture toughness and fracture surface fractal dimension of lithia-based glass-ceramics. J Am Ceram Soc 1995, 78: 3045-3049.
[33] Zhao T, Li AJ, Qin Y, et al. Influence of SiO2 contents on the microstructure and mechanical properties of lithium disilicate glass-ceramics by reaction sintering. J Non-Cryst Solids 2019, 512: 148-154.
[34] Zhao T, Qin Y, Zhang P, et al. High-performance, reaction sintered lithium disilicate glass-ceramics. Ceram Int 2014, 40: 12449-12457.
[35] Hirao K, Nagaoka T, Brito ME, et al. Microstructure control of silicon nitride by seeding with rodlike β-silicon nitride particles. J Am Ceram Soc 1994, 77: 1857-1862.
[36] Pyzik AJ, Beaman DR. Microstructure and properties of self-reinforced silicon nitride. J Am Ceram Soc 1993, 76: 2737-2744.
[37] Yoshizawa Y, Toriyama M, Kanzaki S. Preparation of high fracture toughness alumina sintered bodies from bayer aluminum hydroxide. J Ceram Soc Jpn 1998, 106: 1172-1177.
[38] Chen IW, Rosenflanz A. A tough SiAlON ceramic based on α-Si3N4 with a whisker-like microstructure. Nature 1997, 389: 701-704.
[39] Peillon FC, Thevenot F. Microstructural designing of silicon nitride related to toughness. J Eur Ceram Soc 2002, 22: 271-278.
[40] Becher PF, Hsueh CH, Angelini P, et al. Toughening behavior in whisker-reinforced ceramic matrix composites. J Am Ceram Soc 1988, 71: 1050-1061.
[41] Wang B, Yang J, Guo R, et al. Microstructure and property enhancement of silicon nitride-barium aluminum silicate composites with β-Si3N4 seed addition. J Mater Sci 2009, 44: 1351-1356.
[42] Höland W, Apel E, van‘t Hoen C, et al. Studies of crystal phase formations in high-strength lithium disilicate glass-ceramics. J Non-Cryst Solids 2006, 352: 4041-4050.
[43] Soares PC, Zanotto ED, Fokin VM, et al. TEM and XRD study of early crystallization of lithium disilicate glasses. J Non-Cryst Solids 2003, 331: 217-227.
[44] Fernandes HR, Tulyaganov DU, Goel A, et al. Effect of K2O on structure-property relationships and phase transformations in Li2O-SiO2 glasses. J Eur Ceram Soc 2012, 32: 291-298.
[45] Thieme K, Rüssel C. Nucleation inhibitors-the effect of small concentrations of Al2O3, La2O3 or TiO2 on nucleation and crystallization of lithium disilicate. J Eur Ceram Soc 2014, 34: 3969-3979.
[46] Bischoff C, Eckert H, Apel E, et al. Phase evolution in lithium disilicate glass-ceramics based on non-stoichiometric compositions of a multi-component system: structural studies by 29Si single and double resonance solid state NMR. Phys Chem Chem Phys 2011, 13: 4540-4551.
[47] Apel E, van’t Hoen C, Rheinberger V, et al. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J Eur Ceram Soc 2007, 27: 1571-1577.
[48] Fernandes HR, Tulyaganov DU, Goel IK, et al. Crystallization process and some properties of Li2O-SiO2 glass-ceramics doped with Al2O3 and K2O. J Am Ceram Soc 2008, 91: 3698-3703.
[49] Fernandes HR, Tulyaganov DU, Goel A, et al. Effect of Al2O3 and K2O content on structure, properties and devitrification of glasses in the Li2O-SiO2 system. J Eur Ceram Soc 2010, 30: 2017-2030.
[50] Lutterotti L, Matthies S, Wenk HR. International union of crystallography: commission for powder diffraction newsletter. 1999, 21: 14-15.
[51] Apel E, Höland W, Schweiger M, et al. Lithium disilicate glass ceramic: America, 7871948[P], 2011.
[52] Burgner LL, Weinberg MC, Lucas P, et al. XRD investigation of metastable phase formation in Li2O-2SiO2 glass. J Non-Cryst Solids 1999, 255: 264-268.
[53] Burgner LL, Lucas P, Weinberg MC, et al. On the persistence of metastable crystal phases in lithium disilicate glass. J Non-Cryst Solids 2000, 274: 188-194.
[54] Höland W, Rheinberger V, Schweiger M. Control of nucleation in glass ceramics. Philos T Roy Soc A 2003, 361: 575-588.
[55] Iqbal Y, Lee WE, Holland D, et al. Metastable phase formation in the early stage crystallisation of lithium disilicate glass. J Non-Cryst Solids 1998, 224: 1-16.
[56] Huang SF, Cao P, Li Y, et al. Nucleation and crystallization kinetics of a multicomponent lithium disilicate glass by in situ and real-time synchrotron X-ray diffraction. Cryst Growth Des 2013, 13: 4031-4038.
[57] Höland W, Beall GH. Glass-ceramic technology. Second ed. New Jersey (America): John Wiley & Sons, Inc., 2012.
[58] Huang SF, Zhang B, ZH Huang, et al. Crystalline phase formation, microstructure and mechanical properties of a lithium disilicate glass-ceramic. J Mater Sci 2013, 48: 251-257.
[59] Huang SF, Huang ZH, Gao W, et al. Trace phase formation, crystallization kinetics and crystallographic evolution of a lithium disilicate glass probed by synchrotron XRD technique. Sci Rep 2015, 5: 9159.
[60] Goharian P, Nemati A, Shabanian M, et al. Properties, crystallization mechanism and microstructure of lithium disilicate glass-ceramic. J Non-Cryst Solids 2010, 356: 208-214.
[61] Fernandes HR, Tulyaganov DU, Goel A, et al. Structural characterisation and thermo-physical properties of glasses in the Li2O-SiO2-Al2O3-K2O system. J Therm Anal Calorim 2014, 103: 827-834.
[62] Tulyaganov DU, Agathopoulos S, Kansal I, et al. Synthesis and properties of lithium disilicate glass-ceramics in the system SiO2-Al2O3-K2O-Li2O. Ceram Int 2009, 35: 3013-3019.
[63] Zhang JY, Zhan H, Fu ZY, et al. In-situ synthesis and sintering of mullite glass composites by SPS. J Adv Ceram 2014, 3: 165-170.
[64] Höland W, Schweiger M, Frank M, et al. A comparison of the microstructure and properties of the IPS Empress®2 and the IPS Empress® glass-ceramics. J Biomed Mater Res 2000, 53: 297-303.