Allon, A.S., Luria, R. (2018) Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors. Psychophysiology, 56, e13323.
Andersson, J. L. R., Jenkinson, M., Smith, S. (2007a) Non-linear registration aka Spatial normalisation FMRIB Technical Report TR07JA2. FMRIB Analysis Group of the University of Oxford, 1–22.
Andersson, J. L. R., Jenkinson, M., Smith, S. (2007b) Non-linear optimisation. FMRIB technical report TR07JA1.
Broadbent, D.E. (1958) Perception and communication. New York: Oxford University Press.
Chadick, J.Z., Gazzaley, A. (2012) Differential coupling of visual cortex with default network or frontal-parietal network based on goals. Nat Neurosci, 14, 830-832.
Chadick, J.Z., Zanto, T.P., Gazzaley, A. (2014) Structural and functional differences in prefrontal cortex underlie distractibility and suppression deficits in ageing. Nature Commun, 5, 4223.
Chatham, C.H., Badre, D. (2015) Multiple gates on working memory. Current Opinion in Behavioral Sciences, 1, 23-31.
Cowan, N. (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci, 24, 87-185.
Epstein, R., Kanwisher, N. (1998) A cortical representation of the local visual environment. Nature, 392(6676), 598-601.
Feldmann-Wüstefeld, T., Vogel, E.K. (2019) Neural evidence for the contribution of active suppression during working memory filtering. Cerebral Cortex, 29, 529-543.
Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C., Driver, J. (2011) Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distractor interference of visual working memory. Proc Natl Acad Sci, 108, 17510-17515.
Gazzaley, A., Clapp, W., McEvoy, K., Knight, R., D’Esposito, M. (2008) Age-related top-down suppression deficit in the early stages of cortical visual memory processing, Proc Natl Acad Sci, 105(35), 13122-13126.
Gazzaley, A., Cooney, J.W., McEvoy, K., Knight, R.T., D’Esposito, M. (2005) Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cog Neuro, 17, 507-517.
Gazzaley, A., Cooney, J.W., Rissman, J., D’Esposito, M. (2005) Top-down suppression deficit underlies working memory impairment in normal aging. Nat Neurosci, 8, 1298-1300.
Haeger, A., Lee, H., Fell, J., Axmacher, N. (2015) Selective processing of buildings and faces during working memory: the role of the ventral striatum. European Journal of Neuroscience, 41, 505-513.
Hasher, L., Zacks, R.T. (1988) Working memory, comprehension, and aging: A review and anew view. The Psychology of Learning and Motivation, ed Bower, G.H. (Academic,San Diego), Vol 22, 193–225.
Jenkinson, M., Bannister, P., Brady, M., Smith, S. (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825–841.
Jenkinson, M., Smith, S. (2002) A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5, 143–156.
Kanwisher, N., McDermott, J., Chun, M.M. (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302-4311.
Lee, F-Y., Cowan, N.,Vogel, E.K., Rolan, T.,Valle-Inclán, F., Hackley, S.A. (2010) Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 133, 2677-2689.
Liesefeld, H.R., Liesefeld, A.M., Sauseng, P., Jacob, S.N., Müller, H.J. (2020) How visual working memory handles distraction: cognitive mechanisms and electrophysiological correlates. Visual Cognition, 28:5-8, 372-387.
Lorenc, E.S., Mallett, R., Lewis-Peacock, J.A. (2021) Distraction in visual working memory: Resistance if not futile. Trends in Cognitive Science, 25(3), 228-239.
McNab, F., Dolan, R.J. (2014) Dissociating distractor-filtering at encoding and during maintenance. JEP: HPP, 40, 960-967.
McNab, F., Klingberg, T. (2008) Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103-107.
McNab, F., Zeidman, P., Rutledge, R.B., Smittenaar, P., Brown, H.R., Adams, R.A., Dolan, R.J. (2015) Age-related changes in working memory and the ability to ignore distraction. PNAS, 112, 6515-6518.
O’Reilly, R.C., Frank, M.J. (2006) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18, 283-328.
Puce, A., Allison, T., Gore, J.C., McCarthy, G. (1995) Face-sensitive regions in human extrastriate cortex studies by functional MRI. Journal of Neurophysiology, 74(3), 1192-9.
Rissman, J., Gazzaley, A. D’Esposito, M. (2009) The effect of non-visual working memory load on top-down modulation of visual processing. Neuropsychologia, 47(7), 1637-1646.
Smith, S. M. (2002) Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.
Stokes, M.G. (2015) “Activity-silent” working memory in prefrontal cortex: a dynamic coding framework. Trends in Cognitive Sciences, 19 (7), 394-405.
Vogel, E.K., McCollough, A.W., Machizawa, M.G. (1998) Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500-503.
Woolrich, M. W., Ripley, B. D., Brady, M., Smith, S. M. (2001) Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage, 14, 1370–1386.
Zanto, T.P., Gazzaley, A. (2009) Neural Suppression of Irrelevant Information Underlies Optimal Working Memory Performance, J Neurosci, 29(10), 3059-3066.