[1] S. H. W. van Bree, A. Nemethova, C. Cailotto, P. J. Gomez-Pinilla, G. Matteoli, and G. E. Boeckxstaens, “New therapeutic strategies for postoperative ileus,” Nat. Rev. Gastroenterol. Hepatol., vol. 9, no. 11, pp. 675–683, 2012.
[2] R. Vather, G. O’Grady, I. P. Bissett, and P. G. Dinning, “Postoperative ileus: Mechanisms and future directions for research,” Clin. Exp. Pharmacol. Physiol., vol. 41, no. 5, pp. 358–370, 2014.
[3] A. Venara et al., “Postoperative ileus: Pathophysiology, incidence, and prevention,” Journal of Visceral Surgery. 2016.
[4] D. Bragg, A. M. El-Sharkawy, E. Psaltis, C. A. Maxwell-Armstrong, and D. N. Lobo, “Postoperative ileus: Recent developments in pathophysiology and management,” Clin. Nutr., vol. 34, no. 3, pp. 367–376, 2015.
[5] R. Vather, S. Trivedi, and I. Bissett, “Defining Postoperative Ileus: Results of a Systematic Review and Global Survey,” J. Gastrointest. Surg., vol. 17, no. 5, pp. 962–972, 2013.
[6] R. Vather, G. O ’grady, I. P. Bissett, and P. G. Dinning, “Proceedings of the Australian Physiological Society Symposium: Advances in Methods for Intestinal Motility Postoperative ileus: mechanisms and future directions for research,” Clin. Exp. Pharmacol. Physiol., vol. 41, pp. 358–370, 2014.
[7] A. J. Bauer and G. E. Boeckxstaens, “Mechanisms of postoperative ileus,” Neurogastroenterology and Motility. 2004.
[8] S. Wehner et al., “Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents,” Gut, 2007.
[9] M. Hori et al., “Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS.,” Am. J. Physiol. Gastrointest. Liver Physiol., vol. 280, no. 5, pp. G930–G938, 2001.
[10] T. Tajima et al., “EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOS upregulation through cAMP/ERK signals,” AJP Gastrointest. Liver Physiol., vol. 302, no. 5, pp. G524–G534, 2012.
[11] G. Burnstock, “Purinergic signalling: from discovery to current developments,” Exp. Physiol., vol. 99, no. 1, pp. 16–34, 2014.
[12] B. S. Khakh and R. Alan North, “P2X receptors as cell-surface ATP sensors in health and disease,” Nature, vol. 442, no. 7102, pp. 527–532, 2006.
[13] G. Burnstock and G. E. Knight, “Cellular distribution and functions of P2 receptor subtypes in different systems,” Int. Rev. Cytol., vol. 240, no. SPEC.ISS., pp. 31–304, 2004.
[14] F. Di Virgilio and M. Vuerich, “Purinergic signaling in the immune system,” Auton. Neurosci. Basic Clin., vol. 191, pp. 117–123, 2015.
[15] F. Jacob, C. P. Novo, C. Bachert, and K. Van Crombruggen, “Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses,” Purinergic Signal., vol. 9, no. 3, pp. 285–306, 2013.
[16] C. C. Marques et al., “Prophylactic systemic P2X7 receptor blockade prevents experimental colitis,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1842, no. 1, pp. 65–78, 2014.
[17] R. Coutinho-Silva, A. Morandini, and L. B. Savio, “The role of p2x7 receptor in infectious inflammatory diseases and the influence of ectonucleotidases,” Biomed. J., vol. 37, no. 4, p. 169, 2014.
[18] P. Hofman et al., “Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer,” Cancer Res., vol. 75, no. 5, pp. 835–845, 2015.
[19] Y. Toyomasu et al., “Mosapride Citrate Improves Postoperative Ileus of Patients with Colectomy,” J. Gastrointest. Surg., vol. 15, no. 8, pp. 1361–1367, 2011.
[20] K. I. Okada et al., “Effect of Daikenchuto (TJ-100) on postoperative bowel motility and on prevention of paralytic ileus after pancreaticoduodenectomy: A multicenter, randomized, placebo-controlled phase II trial (The Japan-PD study),” Jpn. J. Clin. Oncol., vol. 43, no. 4, pp. 436–438, 2013.
[21] J. C. Kalff, W. H. Schraut, T. R. Billiar, R. L. Simmons, and A. J. Bauer, “Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents,” Gastroenterology, vol. 118, no. 2, pp. 316–327, 2000.
[22] P. Mattei and J. L. Rombeau, “Review of the pathophysiology and management of postoperative ileus,” World J. Surg., vol. 30, no. 8, pp. 1382–1391, 2006.
[23] J. C. Kalff, T. M. Carlos, W. H. Schraut, T. R. Billiar, R. L. Simmons, and A. J. Bauer, “Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus,” Gastroenterology, 1999.
[24] F. Di Virgilio et al., “Cytolytic P2X purinoceptors.,” Cell Death Differ., vol. 5, no. 3, pp. 191–199, 1998.
[25] P. Pelegrin, C. Barroso-Gutierrez, and A. Surprenant, “P2X7 Receptor Differentially Couples to Distinct Release Pathways for IL-1 in Mouse Macrophage,” J. Immunol., vol. 180, no. 11, pp. 7147–7157, 2008.
[26] J. M. Sanz et al., “Activation of Microglia by Amyloid Requires P2X7 Receptor Expression,” J. Immunol., vol. 182, no. 7, pp. 4378–4385, 2009.
[27] M. Solle et al., “Altered cytokine production in mice lacking P2X7 receptors,” J. Biol. Chem., vol. 276, no. 1, pp. 125–132, 2001.
[28] S. Mariathasan et al., “Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf,” Nature, vol. 430, no. 6996, pp. 213–218, 2004.
[29] S. Mariathasan et al., “Cryopyrin activates the inflammasome in response to toxins and ATP,” Nature, vol. 440, no. 7081, pp. 228–232, 2006.
[30] R. Muñoz-Planillo, P. Kuffa, G. Martínez-Colón, B. Smith, T. Rajendiran, and G. Núñez, “K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter,” Immunity, vol. 38, no. 6, pp. 1142–1153, 2013.
[31] A. L. Giuliani, A. C. Sarti, S. Falzoni, and F. Di Virgilio, “The P2X7 receptor-interleukin-1 liaison,” Front. Pharmacol., vol. 8, no. MAR, pp. 1–10, 2017.
[32] D. Yang, Y. He, R. Muñoz-Planillo, Q. Liu, and G. Núñez, “Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock,” Immunity, vol. 43, no. 5, pp. 923–932, 2015.
[33] C. Huang et al., “Inhibition of P2X7 Receptor Ameliorates Nuclear Factor-Kappa B Mediated Neuroinflammation Induced by Status Epilepticus in Rat Hippocampus,” J. Mol. Neurosci., pp. 1–12, 2017.
[34] G. Rogler et al., “Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa.,” Gastroenterology, vol. 115, no. 2, pp. 357–369, 1998.
[35] S. Schreiber, S. Nikolaus, and J. Hampe, “Activation of nuclear factor kappaB in inflammatory bowel disease,” Gut, vol. 42, pp. 477–484, 1998.
[36] B. Kaltschmidt, D. Widera, and C. Kaltschmidt, “Signaling via NF-??B in the nervous system,” Biochim. Biophys. Acta - Mol. Cell Res., vol. 1745, no. 3, pp. 287–299, 2005.
[37] Y. Kim et al., “Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates the expression of iNOS through IKK and NF-κB activity in LPS-stimulated mouse peritoneal macrophages and RAW 264.7 cells,” Biochem. Biophys. Res. Commun., vol. 314, no. 3, pp. 695–703, 2004.
[38] M. Karmakar, M. A. Katsnelson, G. R. Dubyak, and E. Pearlman, “Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP,” Nat. Commun., vol. 7, p. 10555, 2016.
[39] D. Ferrari et al., “Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages.,” J. Immunol., vol. 159, no. 3, pp. 1451–8, 1997.
[40] D. G. Perregaux, R. E. Laliberte, and C. a Gabel, “Human Monocyte Interleukin-1β Posttranslational Processing,” vol. 271, no. 47, pp. 29830–29838, 1996.
[41] L. Gudipaty, J. Munetz, P. a Verhoef, and G. R. Dubyak, “Essential role for Ca2+ in regulation of IL-1beta secretion by P2X7 nucleotide receptor in monocytes, macrophages, and HEK-293 cells.,” Am. J. Physiol. Cell Physiol., vol. 285, pp. C286–C299, 2003.
[42] R. Coutinho-Silva, C. Monteiro da Cruz, P. M. Persechini, and D. M. Ojcius, “The role of P2 receptors in controlling infections by intracellular pathogens,”
Purinergic Signal., vol. 3, no. 1–2, pp. 83–90, 2007.
[43] D. L. Donnelly-Roberts and M. F. Jarvis, “Discovery of P2X7 receptor-selective antagonists offers new insights into P2X 7 receptor function and indicates a role in chronic pain states,” Br. J. Pharmacol., vol. 151, no. 5, pp. 571–579, 2007.
[44] R. Ferreira et al., “Neuropeptide y modulation of interleukin-1β (IL-1β)-induced nitric oxide production in microglia,” J. Biol. Chem., vol. 285, no. 53, pp. 41921–41934, 2010.
[45] A. Türler et al., “Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus.,” Ann. Surg., vol. 244, no. 2, pp. 220–9, 2006.
[46] E. F. Diezmos, P. P. Bertrand, and L. Liu, “Purinergic signaling in gut inflammation: The role of connexins and pannexins,” Front. Neurosci., vol. 10, no. JUN, pp. 1–11, 2016.
[47] Brian D. Gulbransen, Mohammad Bashashati, Simon A. Hirota et al., “Activation of neuronal P2X7 receptor-Pannexin-1 mediates death of enteric neurons during colitis Brian,” Nat Med., vol. 18, no. 4, pp. 600–604, 2012.