[1] J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells, Applied Physics Letters 105 (2014) 232109.
[2] J. Dréon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, M. Boccard, 23.5%-Efficient Silicon Heterojunction Silicon Solar Cell Using Molybdenum Oxide As Hole-Selective Contact, Nano Energy. 70 (2020) 104495.
[3] L.G. Gerling, S. Mahato, A. Morales-Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers, Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells, Solar Energy Materials and Solar Cells. 145 (2016) 109–115.
[4] J. Werner, J. Geissbühler, A. Dabirian, S. Nicolay, M. Morales-Masis, S. De Wolf, B. Niesen, C. Ballif, Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells, ACS Applied Materials and Interfaces. 8 (2016) 17260–17267.
[5] M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells, Solar Energy Materials and Solar Cells. 142 (2015) 34–41.
[6] J. Bullock, P. Zheng, Q. Jeangros, M. Tosun, M. Hettick, C.M. Sutter-Fella, Y. Wan, T. Allen, D. Yan, D. Macdonald, S. De Wolf, A. Hessler-Wyser, A. Cuevas, A. Javey, Lithium Fluoride Based Electron Contacts for High Efficiency n-Type Crystalline Silicon Solar Cells, Advanced Energy Materials 6 (2016) 1–7.
[7] Y. Wan, C. Samundsett, J. Bullock, T. Allen, M. Hettick, D. Yan, P. Zheng, X. Zhang, J. Cui, J. McKeon, A. Javey, A. Cuevas, Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells, ACS Applied Materials and Interfaces. 8 (2016) 14671–14677.
[8] J. Cho, J. Melskens, M. Debucquoy, M. Recamán Payo, S. Jambaldinni, T. Bearda, I. Gordon, J. Szlufcik, W.M.M. Kessels, J. Poortmans, Passivating electron-selective contacts for silicon solar cells based on an a-Si:H/TiOx stack and a low work function metal, Progress in Photovoltaics Research and Applications 26 (2018) 835–845.
[9] S. Bhatia, A. Antony, P.R. Nair, Unraveling the Hole-Selective Nature of Si/MoOX Heterojunction, IEEE Journal of Photovoltaics. 10 (2020) 1566–1573.
[10] R.A. Vijayan, S. Masilamani, S. Kailasam, K. Shivam, B. Deenadhayalan, M. Varadharajaperumal, Study of Surface Passivation and Charge Transport Barriers in DASH Solar Cell, IEEE Journal of Photovoltaics. 9 (2019) 1208–1216.
[11] C. Messmer, M. Bivour, J. Schon, S.W. Glunz, M. Hermle, Numerical Simulation of Silicon Heterojunction Solar Cells Featuring Metal Oxides as Carrier-Selective Contacts, IEEE Journal of Photovoltaics. 8 (2018) 456–464.
[12] R.A. Vijayan, S. Essig, S. De Wolf, B.G. Ramanathan, P. Loper, C. Ballif, M. Varadharajaperumal, Hole-Collection Mechanism in Passivating Metal-Oxide Contacts on Si Solar Cells: Insights from Numerical Simulations, IEEE Journal of Photovoltaics. 8 (2018) 473–482.
[13] M. Nayak, S. Mandal, A. Pandey, S. Mudgal, S. Singh, V.K. Komarala, Nickel Oxide Hole-Selective Heterocontact for Silicon Solar Cells: Role of SiOx Interlayer on Device Performance, Solar RRL. 3 (2019) 1900261.
[14] S.W. Glunz, F. Feldmann, SiO2 surface passivation layers – a key technology for silicon solar cells, Solar Energy Materials and Solar Cells. 185 (2018) 260–269.
[15] M. Nayak, S. Mudgal, S. Singh, V.K. Komarala, Investigation of anomalous behaviour in J-V and Suns-Voc characteristics of carrier-selective contact silicon solar cells, Solar Energy. 201 (2020) 307–313.
[16] Sentaurus Device User Manual Version N-2017.09, Synopsys, Mountain View, CA, USA, 2017. http://www.synopsys.com.
[17] PV Lighthouse, https://www.pvlighthouse.com.au/ (accessed March 9, 2021).
[18] J. Robertson, Band offsets, Schottky barrier heights, and their effects on electronic devices, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 31 (2013) 050821.
[19] J. Bullock, M. Hettick, J. Geissbühler, A.J. Ong, T. Allen, C.M. Sutter-Fella, T. Chen, H. Ota, E.W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, A. Javey, Efficient silicon solar cells with dopant-free asymmetric heterocontacts, Nature Energy. 1 (2016) 15031.
[20] K. Singh, M. Nayak, S. Singh, V.K. Komarala, Investigation of silicon surface passivation by sputtered amorphous silicon and thermally evaporated molybdenum oxide films using temperature- And injection-dependent lifetime spectroscopy, Semiconductor Science and Technology. 35 (2020) 125017.
[21] L.G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, Origin of passivation in hole-selective transition metal oxides for crystalline silicon heterojunction solar cells, Journal of Materials Research. 32 (2017) 260–268.
[22] L.G. Gerling, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers, Passivating/hole-selective contacts based on V2O5/SiOx stacks deposited at ambient temperature, Energy Procedia, 124 (2017) 584–592.
[23] M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Metal/metal-oxide interfaces: How metal contacts affect the work function and band structure of MoO3, Advanced Functional Materials. 23 (2013) 215–226.
[24] K. Singh, M. Nayak, D. Kumar Singh, V.K. Komarala, Degradation study of carrier selective contact silicon solar cells with ageing: Role of silicon surface morphology, Solid-State Electronics. 179 (2021) 107987.