[1] P.J. Szakács G, Ludwig JA, Booth-Genthe C, Gottesman MM, Targeting multidrug resistance in cancer, Nat Rev Drug Discov 5(3) (2006) 219-34.
[2] P.M. Chaudhary, Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells, Cell 66(1) (1991) 85-94.
[3] J.I. Fletcher, M. Haber, M.J. Henderson, M.D. Norris, ABC transporters in cancer: more than just drug efflux pumps, Nat Rev Cancer 10(2) (2010) 147-56.
[4] G.Z. Wang H, Liu X, Agarwal P, Zhao S, Conroy DW, Ji G, Yu J, Jaroniec CP, Liu Z, Lu X, Li X, He X, Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance, Nat Commun 9(1) (2019) 562.
[5] I.L. S. Nobili, B. Giglioni, E. Mini, Pharmacological strategies for overcoming multidrug resistance, Curr Drug Targets 7(7) (2006)
[6] V. Juang, C.H. Chang, C.S. Wang, H.E. Wang, Y.A.-O. Lo, pH-Responsive PEG-Shedding and Targeting Peptide-Modified Nanoparticles for Dual-Delivery of Irinotecan and microRNA to Enhance Tumor-Specific Therapy, Small 15(49) (2019) e1903296.
[7] C.Y. Liu F, Li Y, Guo Y, Cao Y, Li P, Wang Z, Gong Y, Ran H, Folate-receptor-targeted laser-activable poly(lactide- co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therap, Int J Nanomedicine 13(6) (2018) 5139-5158.
[8] M. Tan, W. Liu, F. Liu, W. Zhang, H. Gao, J. Cheng, Y. Chen, Z. Wang, Y. Cao, H. Ran, Silk Fibroin-Coated Nanoagents for Acidic Lysosome Targeting by a Functional Preservation Strategy in Cancer Chemotherapy, Theranostics 9(4) (2019) 961-973.
[9] S. Behzadi, W. Serpooshan V Fau - Tao, M.A. Tao W Fau - Hamaly, M.Y. Hamaly Ma Fau - Alkawareek, E.C. Alkawareek My Fau - Dreaden, D. Dreaden Ec Fau - Brown, A.M. Brown D Fau - Alkilany, O.C. Alkilany Am Fau - Farokhzad, M. Farokhzad Oc Fau - Mahmoudi, M. Mahmoudi, Cellular uptake of nanoparticles: journey inside the cell, Chem Soc Rev 46(14) (2017) 4218-4244.
[10] G. Alice, P. Capucine, C. Anne-Line, M. Claire, B. Anne-Sophie, P. Stéphane, V. Bernard, Biodegradable Polymeric Nanoparticles-Based Vaccine Adjuvants for Lymph Nodes Targeting, Vaccines 4(4) (2016) 34.
[11] T.F. Martens, K. Remaut, J. Demeester, S.C. De Smedt, K. Braeckmans, Intracellular delivery of nanomaterials: How to catch endosomal escape in the act, Nano Today 9(3) (2014) 344-364.
[12] L.I. Selby, C.M. Cortez-Jugo, G.K. Such, A.P.R. Johnston, Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles, Wiley Interdip Rev Nanomed Nanobiotechnol 9(5) (2017) 1452.
[13] T. Nicola, R. Roberta, N. Mariapaola, M. Barbara, F.A. Lisa, P.M. Adelaide, M.U. Maria, D. Cinzia, Role of Glutathione in Cancer Progression and Chemoresistance, Oxidative Medicine & Cellular Longevity 2013 (2013) 972913.
[14] M.Q. Gong, C. Wu, X.Y. He, J.Y. Zong, J.L. Wu, R.X. Zhuo, S.X. Cheng, Tumor Targeting Synergistic Drug Delivery by Self-Assembled Hybrid Nanovesicles to Overcome Drug Resistance, Pharm Res 34(1) (2017) 148-160.
[15] Y. Wang, W. Wu, J. Liu, P.N. Manghnani, B. Liu, Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II) Based Metal-Organic Framework, ACS Nano 13(6) (2019) 6879-6890.
[16] S.C. Lu, Glutathione synthesis, Biochim Biophys Acta 1830(5) (2013) 3143-3153.
[17] Elie, Hatem, Nadine, El, Banna, Meng-Er, Huang, Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance, Antioxid Redox Signal 27(15) (2017) 1217-1234.
[18] Y.C. Ma, J.X. Wang, W. Tao, C. Sun, X.Z. Yang, Redox-Responsive Polyphosphoester-Based Micellar Nanomedicines for Overriding Chemoresistance in Breast Cancer Cells, ACS Appl Mater Interfaces 7(47) (2015) 26315-25.
[19] G.K. Balendiran, R. Dabur, D. Fraser, The role of glutathione in cancer, Cell Biochem Funct 22(6) (2004) 343-352.
[20] F.S. Yin X, Chi Y, Liu J, Sun K, Guo C, Wu, Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma, Drug Deliv 25(1) (2018) 900-908.
[21] Gergely, Szakács, Matthew, D., Hall, Michael, M., Gottesman, Ahcène, Boumendjel, Targeting the Achilles Heel of Multidrug-Resistant Cancer by Exploiting the Fitness Cost of Resistance, Chem Rev 114(11) (2014) 5753-74.
[22] G. Liang, Y. Zhu, D.J. Ali, T. Tian, H. Xu, K. Si, B. Sun, B. Chen, Z. Xiao, Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer, J Nanobiotechnology 1(10) (2020) 18.
[23] R.A.-O. Bortolozzi, A. Luraghi, E. Mattiuzzo, A.A.-O. Sacchetti, A.A.-O. Silvani, G. Viola, Ecdysteroid Derivatives that Reverse P-Glycoprotein-Mediated Drug Resistance, J Nat Prod 83(8) (2020) 2434-2446.
[24] P. Huang, G. Wang, Y. Su, Y. Zhou, W. Huang, R. Zhang, D. Yan, Stimuli-responsive nanodrug self-assembled from amphiphilic drug-inhibitor conjugate for overcoming multidrug resistance in cancer treatment, Theranostics 9(20) (2019) 5755-5768.
[25] A. Bajaj, P. Kondaiah, S. Bhattacharya, Synthesis and Gene Transfection Efficacies of PEICholesterol-Based Lipopolymers, Bioconjug Chem 19(8) (2008) 1640-1651.
[26] W.T. Godbey, K.K. Wu, A.G. Mikos, Poly(ethylenimine) and its role in gene delivery, Journal of Controlled Release 60(2-3) (1999) 149-160.
[27] Ma, Enhancing endosomal escape for nanoparticle mediated siRNA delivery, Nanoscale 6(12) (2014) 6415-25.
[28] X. Xue, C. Qian, H. Fang, H. Liu, W. He, Photoactivated Lysosomal Escape of a Monofunctional PtII Complex Pt‐BDPA for Nucleus Access, Angewandte Chemie International Edition 58(36) (2019) 12661-12666.
[29] N. Kato, M. Nakamura, T. Uchiyama, 1H NMR studies of the reactions of copper(I) and copper(II) with D-penicillamine and glutathione, J Inorg Biochem 75(2) (1999) 117-121.
[30] H. Fan, G. Yan, Z. Zhao, X. Hu, W. Zhang, H. Liu, X. Fu, T. Fu, X.B. Zhang, W. Tan, A Smart Photosensitizer-Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells, Angew Chem Int Ed Engl 55(18) (2016) 5477-82.
[31] C. Wang, F. Cao, Y. Ruan, X. Jia, W. Zhen, X. Jiang, Specific Generation of Singlet Oxygen through the Russell Mechanism in Hypoxic Tumors and GSH Depletion by Cu-TCPP Nanosheets for Cancer Therapy, Angew Chem Int Ed Engl 58(29) (2019) 9846-9850.
[32] K.H. Cowan, G. Batist, A. Tulpule, B.K. Sinha, C.E. Myers, Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats, Proceedings of the National Academy of ences 83(24) (1986) 9328-9332.
[33]W.X. Li B, Chen L, Zhou Y, Dang W, Chang J, Wu C, Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers, Theranostics 8(15) (2018) 4086-4096.
[34] L.L. Zhu,H.Y Zhou,H.Y. Xia, Z.G. Wang, H.T. Ran, P Li, J.L. Ren, Peptide-Functionalized Phase-transformation Nanoparticles for LIFU-Assisted Tumor Imaging and Therapy, Nano Lett 18(3) (2018) 1831-1841.
[35] H.Y Zhou, L.L. Zhu, Y. Tian, M. Wu, Y. Li, L.M. Deng, W. Jiang, W. Shen, Z.G. Wang, Z. Mei, P. Li, H.T. Ran, Z.Y. Zhou, J.L. Ren, Cell-penetrating Peptide-modified Targeted Drug-loaded Phase-transformation Lipid Nanoparticles Combined with Low-intensity Focused Ultrasound for Precision Theranostics against Hepatocellular Carcinoma, Theranostics 8(7) (2018) 1892-1910.
[36] X.C. Lu W, Zhang R, Shi L, Huang M, Zhang G, Song S, Huang Q, Liu GY, Li C, Receptor-mediated transcytosis: A mechanism for active extravascular transport of nanoparticles in solid tumor, Journal of Controlled Release 161(3) (2012) 959-66.
[37] L. Roth, V.R. Agemy L Fau - Kotamraju, G. Kotamraju Vr Fau - Braun, T. Braun G Fau - Teesalu, K.N. Teesalu T Fau - Sugahara, J. Sugahara Kn Fau - Hamzah, E. Hamzah J Fau - Ruoslahti, E. Ruoslahti, Transtumoral targeting enabled by a novel neuropilin-binding peptide, Oncogene 31(33) (2012) 3754-63.
[38] L. Luo, C. Zhu, H. Yin, M. Jiang, J. Zhang, B. Qin, Z. Luo, X. Yuan, J. Yang, W. Li, Y. Du, Laser Immunotherapy in Combination with Perdurable PD-1 Blocking for the Treatment of Metastatic Tumors, Nat Commun 12(8) (2018) 7647-7662.
[39] W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin, W. Ren, C. Liu, L. Guo, Y. Zhang, L. Sun, K. Zhang, Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice, Nat Commun 10(1) (2019) 2025.
[40] S. Liu, S. Chen, W. Yuan, H. Wang, K. Chen, D. Li, D. Li, PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways, Oncotarget 8(59) (2017) 99901-99912.
[41] T.J. Curiel, Immunotherapy: a useful strategy to help combat multidrug resistance, Drug Resist Updat 15(1-2) (2012) 106-13.
[42] Y.X. Zhong, J. Xu, J. Zhou, J. Liu, M. Ye, L. Zhang, B. Qiao, Z.G. Wang, H.T. Ran, D.J. Guo, Low-Intensity Focused Ultrasound-Responsive Phase-Transitional Nanoparticles for Thrombolysis without Vascular Damage: A Synergistic Nonpharmaceutical Strategy, ACS Nano 13(3) (2019) 3387-3403.
[43] C.G. Zhang , W.J. Zhu, B.G. You, Y. Liu, Z.Q. Yuan, W.L. Chen, J.Z. Li, X.F. Zhou, C. Liu, X.N. Zhang Distinctive polymer micelle designed for siRNA delivery and reversal of MDR1 gene-dependent multidrug resistance, Journal of Biomedical Materials Research Part B Applied Biomaterials 7(105) (2017) 2093-2106.
[44] Z.G. Yue, W. Wei, P.P. Lv, H. Yue, L.Y. Wang, Z.G. Su, G.H. Ma, Surface Charge Affects Cellular Uptake and Intracellular Trafficking of Chitosan-Based Nanoparticles, Biomacromolecules 12(7) (2011) 2440-6.
[45] L. Zhang, J. Sun, Y. Wang, J. Wang, X. Shi, G. Hu, Nonspecific Organelle-Targeting Strategy with Core-Shell Nanoparticles of Varied Lipid Components/Ratios, Anal Chem 88(14) (2016) 7344-51.
[46] M. Mario, O. Idil, R. Cecilia, Z. Xingdong, L. Morten, H. Kerst-Jan, R.P. Coppes, E. Nikolai, M. Muriel, R. Fulvio, Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion, Autophagy 14(8) (2018) 1435-1455.
[47] Q. Feng, X. Li, Q. Chen, J. Sun, X. Shi, B. Ding, H. Yu, Y. Li, X. Jiang, One-Step Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acid-Switchable Surface Charge for Overcoming Drug Resistance, Small 13(9) (2017).
[48] Andre, E., Net, Lutz, Maedler, Darrell, Velegol, Tian, Xia, Eric, Understanding biophysicochemical interactions at the nano-bio interface, Nat Mater 8(7) (2009) 543-57.
[49] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, Multicellular tumor spheroids: An underestimated tool is catching up again, J Biotechnol 148(1) (2010) 3-15.
[50] G. Greczynski, L. Hultman, X-ray photoelectron spectroscopy: Towards reliable binding energy referencing, Progress in Materials ence 107 (2019) 100591.
[51] B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan, Z. Li, Y. Kong, Y. Sang, H. Liu, W. Bu, Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione 'AND' H2O2 Sequentially Triggered Chemodynamic Therapy, J Am Chem Soc 141(2) (2019) 849-857.
[52] K.J. Koski, J.J. Cha, B.W. Reed, C.D. Wessells, D. Kong, Y. Cui, High-Density Chemical Intercalation of Zero-Valent Copper into Bi2Se3 Nanoribbons, J Am Chem Soc 134(18) (2012) 7584-7.
[53] X. Zhu, J. Li, P. Peng, N. Hosseini-Nassab, B.R. Smith, Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite, Nano Lett 19(10) (2019) 6725-6733.
[54] T.C. Chou, Drug combination studies and their synergy quantification using the Chou-Talalay method, Cancer Res 70(2) (2010) 440-6.