[1]. Berberich J, Yang L, Bahar I, Russell A. A stable three enzyme creatinine biosensor. 2. Analysis of the impact of silver ions on creatine amidinohydrolase. Acta Biomaterialia. 2005;1(2):183-91.
[2]. Zhi Q, Kong PY, Zang JT, Cui YH, et al. Biochemical and molecular characterization of a novel high activity creatine amidinohydrolase from Arthrobacter nicotianae strain 02181. Process Biochemistry. 2009;44(4):460-5.
[3]. Weber JA, van Zanten AP. Interferences in current methods for measurements of creatinine. Clinical Chemistry. 1991;37(5):695-700.
[4]. Appleyard G, Woods DD. The pathway of creatine catabolism by Pseudomonas ovalis. J Gen Microbiol. 1956;14(2):351-65.
[5]. Judith S, Gerald B, Gunter S. Stabilization of creatinase from Pseudomonas putida by random mutagenesis. Protein Sci. 1993;2(10):1612-20.
[6]. Afshari E, Amini-Bayat Z, Hosseinkhani S, Bakhtiari N. Cloning, Expression and Purification of Pseudomonas putida ATCC12633 Creatinase. Avicenna J Med Biotech. 2017;9(4):169-75.
[7]. Gihaz S, Bash Y, Rush I, Shahar A, Pazy Y, Fishman A. Bridges to Stability: Engineering Disulfide Bonds Towards Enhanced Lipase Biodiesel Synthesis. ChemCatChem. 2019;12(1):181-92.
[8]. Gribenko A, Patel M, Liu J, McCallum SA, Wang C, Makhatadze GI. Rational stabilization of enzymes by computational redesign of surface charge-charge interactions. Proc Natl Acad Sci U S A. 2009;106(8):2601-6.
[9]. Silva IR, Jers C, Otten H, Nyffenegger C, Larsen DM, Derkx PM, et al. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations. Appl Microbiol Biotechnol. 2014;98(10):4521-31.
[10]. Edwardraja S, Sriram S, Govindan R, Budisa N, Lee S-G. Enhancing the thermal stability of a single-chain Fv fragment by in vivo global fluorination of the proline residues. Molecular BioSystems. 2011;7(1):258-65.
[11]. Benedix A, Becker CM, de Groot BL, Caflisch A, Böckmann RA. Predicting free energy changes using structural ensembles. Nat Methods. 2009;6(1):3-4.
[12]. Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33(Web Server issue):W306-10.
[13]. Heselpoth RD, Yin Y, Moult J, Nelson DC. Increasing the stability of the bacteriophage endolysin PlyC using rationale-based FoldX computational modeling. Protein Eng Des Sel. 2015;28(4):85-92.
[14]. Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006;62(4):1125-32.
[15]. Liu B, Zhang J, Fang Z, Gu L. Enhanced thermostability of keratinase by computational design and empirical mutation. Journal of Industrial Microbiology & Biotechnology. 2013;40(7):697-704.
[16]. Rohl C, Strauss C, Misura K, Baker D. Protein structure prediction using ROSETTA. Methods in enzymology. 2004;383:66-93.
[17]. Magliery TJ, Regan L. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif. J Mol Biol. 2004;343(3):731-45.
[18]. Forrer P, Binz HK, Stumpp MT, Pluckthun A. Consensus design of repeat proteins. Chembiochem. 2004;5(2):183-9.
[19]. Sullivan BJ, Durani V, Magliery TJ. Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J Mol Biol. 2011;413(1):195-208.
[20]. Steipe B, Schiller B, Pluckthun A, Steinbacher S. Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol. 1994;240(3):188-92.
[21]. Lehmann M, Pasamontes L, Lassen SF, Wyss M. The consensus concept for thermostability engineering of proteins. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 2000;1543(2):408-15.
[22]. Lehmann M, Loch C, Middendorf A, Studer D, Lassen SF, Pasamontes L, et al. The consensus concept for thermostability engineering of proteins: further proof of concept. Protein engineering. 2002;15(5):403-11.
[23]. Porebski BT, Nickson AA, Hoke DE, Hunter MR, Zhu L, McGowan S, et al. Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain. Protein Eng Des Sel. 2015;28(3):67-78.
[24]. Aerts D, Verhaeghe T, Joosten H-J, Vriend G, Soetaert W, Desmet T. Consensus engineering of sucrose phosphorylase: The outcome reflects the sequence input. Biotechnology and Bioengineering. 2013;110(10):2563-72.
[25]. Amin N, Liu AD, Ramer S, Aehle W, Meije D, Metin M, et al. Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Engineering, Design & Selection. 2004;17(11):787-93.
[26]. Jackel C, Bloom JD, Kast P, Arnold FH, Hilvert D. Consensus protein design without phylogenetic bias. J Mol Biol. 2010;399(4):541-6.
[27]. Bloom JD, Glassman MJ. Inferring stabilizing mutations from protein phylogenies: application to influenza hemagglutinin. PLoS Comput Biol. 2009;5(4):e1000349.
[28]. Koyama Y, Kitao S, Yamamoto-Otake H, Suzuki M, Nakano E. Cloning and Expression of the Creatinase Gene from Flavobacterium sp. U-188 in Escherichia coli. Agricultural and Biological Chemistry. 2014;54(6):1453-7.
[29]. Hoeffken HW, Knof SH, Bartlett PA, Huber R, Moellering H, Schumacher G. Crystal structure determination, refinement and molecular model of creatine amidinohydrolase from Pseudomonas putida. Journal of Molecular Biology. 1988;204(2):417-33.
[30]. Hong MC, Chang JC, Wu ML, et al. Expression and export of Pseudomonas putida NTU-8 creatinase by Escherichia coli using the chitinase signal sequence of Aeromonas hydrophila. Biochem Genet. 1998;36(11-12):407-15.
[31]. Nishiya Y, Toda A, Imanaka T. Gene cluster for creatinine degradation in Arthrobacter sp. TE1826. Mole Gen Genet MGG. 1998;257(5):581-6.
[32]. Suzuki K, Sagai H, Sugiyama M, et al. Molecular cloning and high expression of the Bacillus creatinase gene in Escherichia coli. J Ferment Bioeng. 1993;76(2):77-81.
[33]. Kensa R, Oka I, Ando M, Yoshimoto T, et al. Creatinine Amidohydrolase (Creatininase) from Pseudomonas putida. J Biochem. 1979;86(4):1109-17.
[34]. Mukherjee G, Banerjee R. Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World Journal of Microbiology and Biotechnology. 2005;22(3):207-12.
[35]. Morley KL, Kazlauskas RJ. Improving enzyme properties: when are closer mutations better? Trends Biotechnol. 2005;23(5):231-7.
[36]. Paramesvaran J, Hibbert EG, Russell AJ, et al. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies. Protein Eng Des Sel. 2009;22(7):401-11.
[37]. Polizzi KM, Chaparro-Riggers JF, Vazquez-Figueroa E, Bommarius AS. Structure-guided consensus approach to create a more thermostable penicillin G acylase. Biotechnol J. 2006;1(5):531-6.
[38]. Shao ZX, Rainer S, Peter K, Janet K. Variants of Erwiania-type Creatinase. US 6958231 B2. P. 2005-10-25.
[39]. Nikolova PV, Henckel J, Lane DP, Fersht AR. Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc Natl Acad Sci U S A. 1998;95(25):14675-80.
[40]. Rath A, Davidson AR. The design of a hyperstable mutant of the Abp1p SH3 domain by sequence alignment analysis. Protein Sci. 2000;9(12):2457-69.
[41]. Hua Y, Lyu C, Liu C, Wang H, Hu S, et al. Improving the Thermostability of Glutamate Decarboxylase from Lactobacillus brevis by Consensus Mutagenesis. Appl Biochem Biotechnol. 2020;191(4):1456-59.
[42]. Sullivan BJ, Nguyen T, Durani V, Mathur D, et al. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J Mol Biol. 2012;420(4-5):384-99.
[43]. Plaza del Pino IM, Ibarra-Molero B, Sanchez-Ruiz JM. Lower kinetic limit to protein thermal stability: A proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins: Structure, Function, and Bioinformatics. 2000;40(1):58-70.
[44]. Pey AL, Rodriguez-Larrea D, Bomke S, Dammers S, et al. Engineering proteins with tunable thermodynamic and kinetic stabilities. Proteins. 2008;71(1):165-74.
[45]. Bommarius AS, Paye MF. Stabilizing biocatalysts. Chem Soc Rev. 2013;42(15):6534-65.
[46]. Arnorsdottir J, Sigtryggsdottir AR, Kristjansson MM. Effect of Proline Substitutions on Stability and Kinetic Properties of a Cold Adapted Subtilase. The Journal of Biochemistry. 2008;145(3):325-9.
[47]. Asgeirsson B, Adalbjornsson BV, Gylfason GA. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase. Biochim Biophys Acta. 2007;1774(6):679-87.
[48]. Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs. Journal of molecular biology. 1997;269(4):631-43.
[49]. Kumar S, Tsai CJ, Nussinov R. Factors enhancing protein thermostability. Protein Eng. 2000;13(3):179-91.
[50]. Liu X, Li T, Hart DJ, Gao S, et al. A universal mini-vector and an annealing of PCR products (APP)-based cloning strategy for convenient molecular biological manipulations. Biochem Biophys Res Commun. 2018;497(4):978-82.
[51]. Golubchik T, Wise MJ, Easteal S, Jermiin LS. Mind the gaps: evidence of bias in estimates of multiple sequence alignments. Mol Biol Evol. 2007;24(11):2433-42.
[52]. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33(7):1870-4.
[53]. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-25.
[54]. Waterhouse A, Bertoni M, Bienert S. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303.