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Genetic regulation of DNA methylation across tissues
reveals thousands of molecular links to complex traits
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Abstract
Epigenetic modifications of chromosomes, including DNA methylation (DNAm), play a fundamental role in gene regulation
in humans. We generated DNAm data for 987 samples from the Genotype-Tissue Expression (GTEx) project, representing 9
tissue types and 424 subjects. We integrated GTEx RNA-seq data to examine methylome-transcriptome associations, their
tissue specificity, and their overlap with regulatory regions. We mapped DNAm quantitative trait loci in cis (mQTLs),
contrasted mQTLs with expression QTLs (eQTLs) with respect to functional elements, and assessed their relative
contributions to complex traits. We identified thousands of mQTL links to traits in locations lacking a relevant eQTL. By
integrating genetic, diverse -omics and phenotype data, we contribute to the understanding of molecular regulatory
mechanisms in human tissues and their association with complex traits.

Introduction
The majority of common genetic variants that impact human traits are believed to exert their effects through the regulation
of nearby genes 1,2. Genetic regulation of gene expression has been comprehensively characterized across many human
tissue types 3,4, and expression quantitative trait loci (eQTLs) appear to underlie a substantial fraction of variant-trait
associations 5–7. However, our understanding of the regulatory mechanisms by which variants influence human traits is far
from complete. Elucidating how variants impact epigenetic features, e.g. DNA methylation (DNAm) is critical, as these
features can influence, and respond to, gene expression 8.

While gene expression data from healthy tissues and cells are widely available and well-characterized 9, comparable data
sources for DNAm are lacking, and exist primarily for blood and for diseased tissues such as tumors 10. The enhanced
GTEx project 11 seeks to complement existing gene expression data from human tissues with additional molecular traits,
including DNAm.

In humans, DNAm at CpG dinucleotides is involved in key biological processes 12–14 and plays a critical role in the etiology
of numerous diseases 15. Among other factors, inter-individual DNAm variation is influenced by genetic variation 16, and the
integration of DNAm quantitative trait loci (mQTLs) with genome-wide association analysis (GWAS) data has uncovered a
putative causal role of DNAm in genetic susceptibility mechanisms 17–20. With notable exceptions 17–19,21−23, most mQTL
studies conducted to date have assessed DNAm in blood-derived samples 20,22−26, preventing the identification of tissue-
specific mQTLs undetectable in blood. Therefore, mQTL catalogs derived from a variety of healthy, solid tissues are needed
and can contribute to the characterization of the etiology of complex traits.

Here, we profiled human DNAm for > 750,000 genomic locations (CpGs or CpG sites). The dataset includes 987 samples
representing 9 tissue types (Supplementary Table 1). Gene expression is also available for 3,872 samples derived from
these 9 tissue types 4, and 495 DNAm-profiled samples have gene expression and genotype data available. To further
characterize the relationship between DNAm and gene expression in a tissue-specific manner, we identified CpGs for which
DNAm was associated with local gene expression. To characterize the cis-genetic regulation of methylation across tissues
and compare it to its gene expression counterpart, we mapped mQTLs and eQTLs. We contrasted mQTL to eQTL profiles
and characterized their interdependency as well as differential tissue specificities, functional mechanisms and regulatory
pleiotropy signatures. To evaluate the impact of mQTLs on human traits and assess their relative contribution compared to
eQTLs, we integrated mQTLs and eQTLs with genome-wide association study (GWAS) summary statistics of 87 GWASs.

Results
Comparison of DNA methylomes with transcriptomes reveals tissue-specific signatures unique to methylation



Page 3/24

To investigate the contribution of tissue type to the similarity of DNAm-profiled samples, we reduced the high-dimensional
methylome dataset to two dimensions, which revealed sample similarity by tissue of origin (Fig. 1a). We identified robust
methylation-derived tissue clusters (Methods) that reflect shared yet distinct patterns compared to transcriptome-derived
clusters (Fig. 1b). Observed patterns suggest that the biological processes that drive methylome similarity across tissues
differ, in part, from corresponding transcriptome ones, and that blood, despite being the most widely studied biospecimen
type for DNAm, is not a suitable proxy of solid tissue DNAm patterns.

Local correlation between DNA methylation and expression can be tissue-specific or shared across tissues

To characterize the interdependence between DNAm and expression, we mapped DNAm associations with local gene
expression (eQTMs) across tissue types. The number of CpGs correlated with at least one gene (eCpGs) ranged from 1,542
in testis to 4,568 in ovary (Supplementary Table 2). We assessed replication of eQTMs in a muscle-derived external dataset
19 by estimating the true positive rate (π1) of eQTMs identified in each GTEx tissue type. We observed a high replication rate
(cross-tissue average π1 = 0.75), confirming the reproducibility of the eQTMs mapped herein despite limited samples
available. Similarly to transcriptome- and eQTL-derived patterns observed in previous GTEx analyses 3,4,9, eQTMs tend to be
either tissue-specific or shared across most tissue types (Supplementary Figure 1).

To investigate how accurately the CpG-gene assignments provided by Illumina reflect the eQTM results observed in GTEx
data, we contrasted our eQTM findings with the EPIC array CpG annotation file provided by Illumina. We observed that only
45% (2,641/5,898) of detected eCpGs match an Illumina CpG-gene association (Supplementary Note). Thus, our eQTM
predictions can be utilized to assign CpGs to gene(s) with which they are biologically linked.

The association of DNA methylation with expression of nearby genes differs by regulatory elements

To functionally characterize the relationship between CpGs and genes, we identified enrichments (Fisher’s exact test FDR <
0.01) of eCpGs in gene regulatory elements compared to CpGs uncorrelated with gene expression. Promoters and proximal
enhancers are strongly enriched (OR = 4.55 and 4.17, respectively) for eCpGs, as well as insulators (OR = 2.32) and distal
enhancers (OR = 1.74). Overall, 54% (3,188/5,898) of eCpGs overlap with gene regulatory elements. Using logistic
regression, we examined additional factors for evidence of contribution to eQTM presence (Supplementary Table 2), which
revealed distinctive signatures by regulatory element class (Fig. 1c). Proximity of CpG to gene transcription start site (TSS)
increases the likelihood of the eQTM association ubiquitously across regulatory elements, but high CpG methylation and
corresponding negative correlation with gene expression are only predictive of eQTMs linked to promoters and proximal
enhancers. Distal enhancer and insulator eQTMs are enriched for low-methylated eCpGs, and low gene expression appears
to be predictive of insulator-linked eQTMs exclusively. 

Together, these results suggest that DNAm in CpG sites is associated with transcription of cis-genes through their regulatory
elements, as described 27. However, they also indicate heterogeneity of the biological mechanisms driving eQTMs, that
depend on the class of regulatory elements involved, compatible with patterns observed in blood cells 23,28.

Genetic regulation of DNA methylation in cis exhibits tissue specificity

To characterize the genetic regulation of DNAm across tissues, we mapped genetic variants that affect DNAm levels of
proximal CpG sites in cis (mQTLs). We first analyzed each tissue separately by fitting a linear model that accounts for
technical and biological factors related to DNAm variability, and identified significant (FDR < 0.05) mQTL CpG sites in cis
(mCpGs). Subsequently, we modeled mQTL effects jointly across tissues to achieve increased QTL-mapping power by
leveraging tissue-shared effects 29. Additionally, we mapped secondary cis-QTL signals using a stepwise regression
procedure 30. To be able to compare mQTL to cis-eQTL patterns, we employed an analogous QTL-mapping approach to
identify eQTLs.

https://paperpile.com/c/I0ufp0/ev67
https://paperpile.com/c/I0ufp0/IIX5+cW0Q+z7VF
https://paperpile.com/c/I0ufp0/koe2
https://paperpile.com/c/I0ufp0/ubQD+fO49
https://paperpile.com/c/I0ufp0/QlMv
https://paperpile.com/c/I0ufp0/km8i
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We detected a total of 286,152 mCpGs, ranging from 108,844 in testis to 206,802 in lung (Fig. 2a), of which 45,543/286,152
(16%) have secondary signals in at least one tissue. For blood and muscle tissues, we quantified the mQTL replication rate
in external datasets and observed a high replication rate (cross-tissue average π1 = 0.92). For a particular CpG, genetic
regulation of DNAm tends to be either highly tissue-specific or highly shared across tissue types (Supplementary Figure 2),
similarly to the observed pattern reported for eQTLs and splicing QTLs (sQTLs) 4. On average, 37% of mCpGs observed in a
single tissue are also present in all the remaining tissues (Fig. 2b), but only 5% of the identified mCpGs were detected as
mCpGs exclusively in a single tissue. Compared to eQTLs, mQTLs appear to be significantly (Wilcoxon rank-sum test P <
0.05) more shared across tissues, as observed in blood cells 23.

Functional mechanisms that drive genetic regulation of DNA methylation differ from gene expression

To characterize differential molecular mechanisms of mQTLs relative to eQTLs, we integrated annotation of CpG islands
(CGIs), genomic functional elements, and chromatin states (Supplementary Table 3) and performed within- and meta-tissue
enrichment analyses (Methods). We observe that eQTLs are more strongly enriched in open chromatin sites than mQTLs
(Supplementary Figure 3). While both eQTLs and mQTLs are enriched in gene regulatory regions (Fig. 2c), only eQTLs are
enriched in CGIs and gene transcripts, particularly in splicing and untranslated exon regions (UTR), as previously described
4. Conversely, mQTLs are depleted from CGIs and genes, as previously observed in blood 20,25, but are strongly enriched in
distal enhancers. Compatible patterns are observed when analyzing tissue-specific extended chromatin state predictions
matching mQTL tissue source (Supplementary Figure 3). DNAm QTLs also show enrichment in putative insulators (Fig. 2c).
To further characterize additional mQTL-associated transcription factors (TFs), and to distinguish between mQTL and eQTL
distinctive TF binding sites (TFBS) associations, we integrated empirical annotation of TFBSs corresponding to 339 TFs.
Considering corresponding TFBSs, we identified 126 TFs significantly enriched (FDR < 0.01, Odds Ratio (OR) > 1) in eQTLs
or mQTLs (Supplementary Table 3). We observed remarkably different TFBS enrichment profiles for mQTLs compared to
eQTLs. The eQTL enrichments with the smallest p-values across tissues correspond to TFs involved in basal transcription,
e.g. RNA Polymerase II genes. Conversely, mQTLs are enriched, among other TFBSs, in binding sites of steroid receptors,
e.g. ESR1 and NR2F2, and other proteins known to be involved in 3D organization of the genome (Supplementary Table 3,
Fig. 2d).

Altogether, these results suggest that mQTLs and eQTLs largely diverge in their underlying biological mechanisms, driven
by mostly distinct sets of TFs. While eQTLs result from variants altering gene body and regulatory elements, mQTLs result
in part from variants altering non-genic, distal regulatory elements, elements bound by proteins involved in chromatin
spatial conformation and long-range interactions, including insulators. The location of mQTLs with respect to open
chromatin and actively transcribed regions indicates that, compared to eQTLs, mQTLs are more likely to reside in proximal
regulatory regions that appear inactive in the mQTL-mapping context analyzed herein.

Genetic co-regulation of DNA methylation and gene expression is not pervasive and exhibits heterogeneity across regulatory
elements

Given their divergent genomic enrichment profiles, it is expected that mQTLs and eQTLs are driven, at least in part, by
different causal variants. To quantify the extent of eQTL-mQTL pairs (e/mQTL) that share a predicted causal variant, we
performed e/mQTL colocalization, and observed that the proportion of detectable mQTLs that show clear colocalization
with a detectable eQTL is moderate (Fig. 2e), as only 21% of mQTL loci are suggestively colocalized (PP4 > 0.5) with at
least one eQTL. Despite limitations in accurately estimating this fraction, our results indicate that a considerable fraction of
mQTLs do not show clear associations with local gene expression in the context analyzed herein.

Among e/mQTL colocalized variants, the direction of the effect on methylation and expression is significantly (exact
binomial test P < 2.2e-16) more often (53%) in the opposite direction, as previously observed 26. However, we observe
significant (test of equal proportions P < 2.2e-16) differences between regulatory regions; the proportion of mCpGs
corresponding to opposite e/mQTL effects tends to be larger in eGene-matching promoters and proximal enhancers (61%)

https://paperpile.com/c/I0ufp0/z7VF
https://paperpile.com/c/I0ufp0/ubQD
https://paperpile.com/c/I0ufp0/z7VF
https://paperpile.com/c/I0ufp0/Z5xe+NGVU
https://paperpile.com/c/I0ufp0/R5ma
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than in distal enhancers (52%) and minority (39%) in insulators. These observations are in line with the view that
hypomethylation in proximal gene regulatory regions is associated with active transcription.

Genetic regulation of DNA methylation is characterized by molecular regulatory pleiotropy

In order to characterize the molecular pleiotropic nature of mQTLs, we quantified the number of mCpGs and eGenes
involved in loci harboring mQTL-eQTL colocalizations (Methods). Overall, we observe pervasive pleiotropy; the majority
(78%) of colocalized eQTLs-mQTLs impact multiple mCpGs, and a considerable minority (28%) impact multiple eGenes
(Supplementary Figure 4). The largest pleiotropic set, identified in ovary, is led by variant rs6433571 and involves 114
mCpGs and 8 eGenes in the HOXD gene cluster region (Fig. 3a), associated with epithelial ovarian cancer 31. This
pleiotropic effect is not driven by ovary-specific gene expression (Fig. 3b) but by ovary-specific genetic regulation of DNAm
and expression (Fig. 3, c and d). By means of QTL-GWAS colocalization, we identified 112/114 mCpGs and 7/8 eGenes as
significantly (PP4 > 0.5) colocalized with ovarian cancer risk (Supplementary Table 4), including the HOXD1 and HOXD3
genes which have a suspected role in genetic risk of ovarian cancer 32,33, as well as less characterized genes, e.g. non-
coding gene HAGLR. Together, these findings provide an illustrative example of how genetic variants can drastically modify
the DNAm landscape in a long-range and tissue-specific manner, altering gene expression and impacting disease risk.

Genetic regulation of DNA methylation impacts complex trait associations extensively

Prior studies 17–20 have provided evidence that mQTLs can be associated with human phenotypes. To evaluate the impact
of mQTLs on traits in a systematic manner, and compare their effects to those of eQTLs, we integrated QTLs with genome-
wide association study (GWAS) summary statistics of 87 GWASs, 83 of which had at least one QTL-overlapping GWAS hit
(P < 5e-08), and were therefore tested for colocalization with a robust multi-method approach (Supplementary Figure 5).

Across all GWASs, tissues, and QTL types, we identified a total of N = 12,922 significant (RCP > 0.3 and PP4 > 0.3) QTL-
GWAS colocalizations - named simply ‘colocalizations’ (Supplementary Table 5). We observed that mQTL colocalizations
were more abundant than eQTL colocalizations for almost all (91%) of GWASs (Fig. 4). The overlap between eQTL- and
mQTL-GWAS colocalizations is moderate, with 27% (749/2,734) of GWAS hits colocalizing with both QTL types (e/mQTL-
shared),  55% of hits colocalizing with at least one mQTL but with no eQTLs (mQTL-specific), and 18% of hits colocalizing
with at least one eQTL but with no mQTLs (eQTL-specific).

These results highlight the importance of integrating different types of -omics data from different tissue sources, and
considering secondary QTL signals, to maximize the expectation of identifying molecular links to inheritable traits.

Genetic regulation of DNA methylation facilitates the fine-mapping of trait-associated causal variants and characterization
of regulatory mechanisms

Among mQTL-specific colocalizations, we identified an ovary-specific mQTL association (rs2853669-cg07380026, P = 6.7e-
13) colocalized (PP4 = 0.84) with a breast cancer GWAS signal in the TERT locus  (Fig. 5a). TERT expression is mostly
undetectable in adult tissues but high in tumors, and the locus harbors multiple independent variants associated with
several types of cancer risk 34. Another example of a mQTL-specific colocalization is an ovary-specific, secondary mQTL
association (rs7161194-cg05029961, P = 8.0e-15) that colocalized (PP4 = 0.98) with a body mass index GWAS signal in the
microRNA-rich MEG9 locus (Fig. 5b), for which colocalization could not be identified considering the primary mQTL signal.
The mVariant rs7161194 affects cis-microRNAs’ expression 35.

For 19% (144/749) of the colocalized e/mQTL-GWAS shared loci, the mQTL-GWAS association shows greater
colocalization probability than the eQTL-GWAS association in at least one tissue and/or independent QTL colocalization.
We observe cases where the additional resolution to define potentially causal variants brought by mQTLs is small due to
almost perfect linkage disequilibrium (LD) between lead mQTL and eQTL variants, as in the breast cancer linked NTN4

https://paperpile.com/c/I0ufp0/wN7s
https://paperpile.com/c/I0ufp0/YLEH+X3rH
https://paperpile.com/c/I0ufp0/SvGq+jekW+ev67+Z5xe
https://paperpile.com/c/I0ufp0/8ndL
https://paperpile.com/c/I0ufp0/eKmu
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locus (Fig. 5c). However, in multiple instances the lead e/mQTL variants are in moderate or low LD, and the mQTL mirrors
the GWAS association substantially more optimally than eQTL does, as in the hypertension-associated MYO9B locus (Fig.
5d). We also observe cases where the GWAS locus harbors association signals compatible with the existence of multiple
independent causal variants, where GWAS colocalization with eQTLs and mQTLs contributes to differentiate and
characterize these independent causal variants by their distinct colocalization patterns, as in the EFEMP2 locus linked to
asthma (Fig. 5e). Together, these results provide evidence that integration of e/mQTL-GWAS colocalization signals can aid
the fine-mapping of the causal variant(s) and better characterize the molecular mechanisms underlying complex traits, as
shown 2,36,37.

Trait-linked methylation quantitative trait loci exhibit molecular regulatory pleiotropy and enrichment in trait-relevant tissues

Identification of QTL associations with traits in relevant tissue(s) can provide insights into their underlying genetic and
molecular mechanisms 6. By analyzing the observed proportions of mQTL-GWAS colocalizations per tissue, we identified
18/65 traits with a disproportionate (test of equal proportions FDR < 0.05) amount of colocalizations in at least one tissue
(Fig. 6a). Overall, the tissue with the largest proportion of colocalizations per trait matched the prior given current biological
knowledge. For instance, blood clot and cell count traits were enriched in colocalizations derived from whole blood mQTLs,
and breast cancer was nominally (Fisher’s exact test P = 0.02) enriched in breast-derived mQTLs. For traits where the
observed tissue link is less obvious, the observed enrichment can be artifactual or it could point to an uncharacterized role
of a specific tissue in the trait’s biology. Together, these results suggest that mQTLs are informative of complex traits’
relevant tissues and can thereby aid the characterization of trait etiology, as observed for eQTLs 5–7 .

It is expected that many QTLs that impact traits do so by exhibiting molecular regulatory pleiotropy, i.e. altering multiple
molecules and/or molecular phenotypes. It has been shown that eQTLs where the lead eVariant regulates multiple eGenes
are more likely to yield a trait association than eQTLs that regulate a single eGene 4. However, the effect that regulatory
pleiotropy plays in mQTL-trait associations has not been extensively characterized. Here, we observe that mQTL-GWAS
colocalizations are enriched in mVariants regulating multiple, as opposed to single, mCpGs (OR = 2.65, Fisher’s exact test P
< 2.2e-16). Among trait-linked mCpGs that colocalize with at least one eGene, we observed enrichment (OR = 1.40, P = 6.3e-
08) for trait colocalizations involving multiple mCpGs and eGenes (Tier 4 in Supplementary Figure 3), as in HOXD locus
(Fig. 3a). These results indicate that mQTLs that exhibit regulatory pleiotropy have increased chances to impact a complex
trait.

Trait-linked genetically-regulated methylated loci exhibit decreased methylation and are preferentially located in regulatory
regions

To better understand the DNAm changes that contribute to mQTL impactfulness on traits, we characterized DNAm levels of
trait-linked mCpGs and their overlap with open chromatin regions, as well as DNAm gains and losses attributable to
increased disease-risk alleles. Compared to mCpGs without identifiable trait links, we observe an enrichment (Fisher’s exact
test P < 2.2e-16, OR = 1.50) of trait-linked mCpGs in in open chromatin regions; with which 53% (1,791/3,381) of trait-linked
mCpGs overlap, with e/mQTL-shared GWAS-colocalized loci exhibiting a stronger enrichment (OR = 1.96) compared to
mQTL-specific loci (OR = 1.36). Trait-linked mCpGs tend to have lower DNAm levels compared to trait-agnostic mCpGs
(Wilcoxon rank-sum test P < 0.05), whereas trait-linked eGenes tend to be highly expressed (Supplementary Figure 6). To
characterize the pathogenicity of genetically-regulated DNAm changes, we examined the association of disease-risk alleles
with the direction of mQTL effects for a subset of 31/87 disease GWAS traits, and we did not observe a global, significant
(FDR < 0.05) association of disease-risk alleles with increased or decreased DNAm, either across or within traits (Methods).
These results suggest that genetically-regulated DNAm loci that play a role in trait etiology correspond to lowly-methylated
CpG sites in active chromatin regions, and that both gains and losses of DNAm can be pathogenic depending on the
context.

https://paperpile.com/c/I0ufp0/JfEc+8A78+W3bO
https://paperpile.com/c/I0ufp0/tI36
https://paperpile.com/c/I0ufp0/cC76+tI36+G6sI
https://paperpile.com/c/I0ufp0/z7VF
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Typically, variants contributing to the genetic basis of a trait are thought to act by affecting gene regulation. Concordantly, 
we observe an enrichment (Fisher’s exact test P < 0.05) of trait-linked mCpGs in gene regulatory elements (OR = 1.63, P <
2.2e-16), compared to mCpGs without an identified trait link; 71% (2,390/3,381) of trait-linked mCpGs fall into this category.
However, mCpGs corresponding to mQTL-specific colocalizations show a divergent profile compared to e/mQTL-shared
colocalizations (Fig. 6b). While e/mQTL-shared GWAS-colocalized mCpGs are depleted in distal enhancers (OR = 0.68) and
enriched in gene body element regions (OR = 1.54 to 2.22), promoters (OR = 2.19) and proximal enhancers (OR = 2.12),
mQTL-specific GWAS-colocalized mCpGs are enriched in both proximal (OR = 1.36) and distal (OR = 1.39) enhancers, but
not in promoters. Our results suggest that distal regulatory elements play an important role in DNAm impact on genotype-
phenotype associations.

Integration of trait-linked methylated loci with functional maps enables the identification of trait-associated candidate
genes

To identify genes that could mediate the effect of mQTLs on human traits, we integrated mQTL-specific trait-linked mCpGs
with curated promoter- and enhancer-gene target predictions 38,39 and eQTM associations generated herein (Methods). We
identified 68% (1,307/1,911) of mCpGs as functionally linked to gene(s) (Supplementary Table 6). Among highly supported
(by ≥ 3 mCpGs) cases, we identify both well-known gene-trait associations, such as APOB with cholesterol, TERT with
cancer, and ABO with blood traits. We also identify lesser characterized trait-linked genes, such as RUNX1 with asthma and
TMEM72 with red blood cell counts, with biological evidence compatible with predicted trait links (Supplementary Note).
Our results suggest that integrating the mQTL-trait maps generated herein with additional functional genomic maps can
enable the identification of trait-linked candidate genes.

Discussion
To our knowledge, our study is the most comprehensive work that has assessed and compared the genome-wide DNAm
profile of highly-diverse, healthy human tissue types in a systematic manner. Moreover, most studies that have
characterized DNAm in relation to gene expression patterns have focused on blood cells 22,28, with some exceptions 19. Our
eQTM catalog facilitates improved CpG annotation, and allows for the characterization of disease-altered CpG-gene
regulation landscapes by contrasting diseased with non-diseased tissue profiled herein. Additionally, integration of multi-
tissue eQTM maps with single-cell expression data allows for the prediction of cellular abundances, as recently shown40.

This work substantially contributes to an enhanced molecular characterization of complex traits. Across most traits, the
aggregated contribution of mQTLs to trait links is larger than eQTLs, despite mQTLs being derived from substantially
smaller sample sets. Hence, we conclude that generally, trait-associated variants are more likely to result in detectable
changes to DNA methylation than gene expression. Consequently, we demonstrate that mQTLs can untap a substantial
amount of molecular links to traits otherwise missed by eQTL-GWAS colocalization approaches. For these cases, mQTLs
provide evidence of regulatory mechanisms underlying GWAS findings in absence of eQTL-based links to specific genes,
and may pinpoint putative candidate genes. That is, integration of trait-linked mQTL associations with functional genomic
maps like curated enhancer-gene target predictions 38,39 and eQTM associations can guide the design of variant-to-function
studies for complex traits.

The enrichment and large overlap (71%) of trait-linked mCpGs with regulatory elements suggests that while methylation
may often play a role along the causal pathway to phenotype, its role on genotype-phenotype associations may generally
involve a gene expression mechanism. However, the lack of observed eQTLs for mQTL-specific GWAS colocalizations
raises questions about how genetically-regulated DNAm impacts trait-related biology. Unidentified eQTLs derived from
unprofiled transcripts herein, e.g. microRNAs or genes with very low expression levels (undetectable by RNAseq), are
expected to explain part of the missing links. However, we hypothesize that some of the observed mQTL-specific
colocalizations include loci where DNAm is genetically co-regulated with gene expression only in a particular context - such

https://paperpile.com/c/I0ufp0/J8WS+OCoK
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as early development, stem cells, cancer - which causally impacts the trait; but only methylation - not gene expression - is
identifiable beyond the causal context, i.e. in the differentiated cells and/or healthy tissues from GTEx. In that sense, we
suggest that DNAm may be more stable across different contexts as compared to expression, and that regulatory QTL
mapping during context-specific, dynamic cellular processes can reveal otherwise hidden regulatory variation that may be
particularly relevant in disease 41. Alternatively, DNAm-phenotype links may involve additional molecular phenotypes other
than gene expression. Given that intragenic DNAm can influence splicing 42, it is possible that sQTLs contribute to identified
mQTL-trait links. Taken together our results emphasize, supported by the trait-linked regulatory pleiotropy patterns observed,
the importance of integrating multiple -omics to exhaustively pinpoint molecular links and candidate genes to traits.

The dataset generated herein not only constitutes the largest cohort with multi-tissue DNAm data generated to date, but
allows for integrative -omics analyses by enhancing existing transcriptome- and proteome-based GTEx datasets 4,11,43, and
provides the research community with a valuable resource to investigate the inherited susceptibility to human disease and
complex traits from both cross-tissue and cross-omics perspectives. Altogether, our results contribute to a better
understanding of the human DNA methylome, and its relationship with both the transcriptome and complex traits.

Methods
Obtention and processing of functional genomic data

Gene regulatory element annotations were derived from ENCODE Encyclopedia version 5 (ENCODE5) predicted cis-
Regulatory Elements (cCREs) catalog, including distal enhancers [ENCFF535MKS], proximal enhancers [ENCFF036NSJ],
promoter-like regions [ENCFF379UDA] and putative insulators [ENCFF262LCI], where [${id}] corresponds to ENCODE5 file id
from https://www.encodeproject.org/ . Putative insulators are defined herein by CTCF binding sites 44 unrelated to
enhancers, promoter-like regions and DNase-H3K4me3 marks. Gene body annotations were obtained from GENCODE
version 26 website [ https://www.gencodegenes.org/human/release_26.html ]. Genomic variant annotations were derived
from Ensembl build 102 VEP cache [ ftp://ftp.ensembl.org/pub/release-
102/variation/indexed_vep_cache/homo_sapiens_vep_102_GRCh38.tar.gz ]. Different annotations were collapsed: splice
region, acceptor and donor sites were collapsed to ‘splice site’ and coding sequence sites to ‘CDS’. Open chromatin
annotations derived from DNase-seq were obtained from ENCODE project version 5 website [
https://www.encodeproject.org/ ]. DNase-seq profiles of adult individuals matching tissues analyzed herein were selected,
including breast [ENCFF788BHK], colon transverse [ENCFF903WEH], kidney [ENCFF407WZV], lung [ENCFF886KAA], muscle
[ENCFF983ONG], ovary [ENCFF500HAK], prostate [ENCFF557QYU] and testis [ENCFF761JZU]. Chromatin state predictions
corresponding to a 18-state model derived from 6 marks - H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3 and
H3K27ac - were obtained from ROADMAP FTP site [
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core_K27ac/jointModel/final/
]. Chromatin state predictions corresponding to adult individuals’ epigenomes matching tissues analyzed herein were
selected, including colonic mucosa [E075], lung [E096], muscle skeletal [E108], ovary [E097] and primary mononuclear cells
from peripheral blood [E062]. Transcription factor (TF) binding annotations were derived from ENCODE version 2 and 3
ChIP-seq clustered peaks combined from 1,256 experiments, representing 340 transcription factors in 129 cell and tissue
types; obtained from UCSC table browser [ http://genome.ucsc.edu/cgi-bin/hgTables , table encRegTfbsClustered, build
hg38]. CpG island (CGI) predictions were derived from UCSC table browser [ http://genome.ucsc.edu/cgi-bin/hgTables ,
table cpgIslandExt, build hg38]. Enhancer-gene predictions were derived from Genehancer predictions from UCSC table
browser [ http://genome.ucsc.edu/cgi-bin/hgTables , table geneHancerRegElementsDoubleElite, build hg38], and from
https://www.engreitzlab.org/resources/ (all element-gene connections with ABC scores > = 0.015).
Generation of epigenome-wide DNAm methylation (DNAm) data

Epigenome-wide DNAm was derived from 1,000 tissue samples from 9 unique tissue types (Supplementary Table 1)
obtained from 424 GTEx subjects. DNA samples were extracted from GTEx tissue samples using Qiagen Gentra Puregene
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method at GTEx Laboratory Data, Analysis and Coordinating Center (LDACC), and sent to the Institute for Population and
Precision Health Laboratory on 96-well plates. Tissue types were not batched by plate. Bisulfite conversion was applied to
500 ng of DNA using EZ-96 DNA methylation kit (Zymo Research, Irvine, CA, USA). All samples were then prepared and
analyzed in accordance with the manufacturer guidelines and protocol for the Infinium MethylationEPIC array (Illumina, San
Diego, CA, USA); which was utilized to measure DNAm levels for 866,895 (867K) genomic locations, encompassing
primarily CpG dinucleotides but also non-CpG sites. For simplicity, we refer to both types of sites as CpGs or CpG sites. Raw
DNAm data was processed with ChAMP software 45. For sample quality control (QC), we excluded (1) 3 samples with
undetectable or missing methylation values (detection P > 0.01) in ≥ 5% of CpGs and (2) 6 samples with mismatched sex.
For CpG QC, we excluded (1) CpGs that had detection P > 0.01 in ≥ 1 samples (N = 44,135) and that had a beadcount < 3 in
≥ 5% samples (N = 660), (2) cross-reactive CpGs (N = 40,812), (3) variant-overlapping CpGs or within a single base pair
extension (N = 7,708) 46 and (4) CpGs mapping to sex chromosomes. A total of 754,054 CpGs passed QC, could be mapped
and lifted over from GRCh37 to GRCh38 human genome build and were retained for further analysis.

Raw DNAm values were background-adjusted using the single sample normal-exponential out-of-band (ssnoob) method
with dye bias correction 47,48. DNAm β values were normalized using the beta mixture quantile (BMIQ) method, adjusting for
type I/II probe bias 49; output β values for each CpG were used in downstream analysis. After normalization, we removed
one additional sample with array-derived genotype profile not matching WGS-derived one. Principal component analysis
(PCA) was conducted on DNAm β values within each tissue type, and 3 samples were removed for being outliers with
respect to the top 5 principal components (PCs) of the corresponding tissue. A total of 987 samples passed final QC and
were retained for further analysis.
Estimation of tissue similarity based on DNAm and gene expression

Mean DNAm and gene expression levels for each tissue type were used to calculate tissue distances (1 - Spearman rank-
correlation coefficient (⍴)) in a pairwise fashion. For DNAm, ⍴ was calculated on the mean DNAm for each CpG (across all
samples for a given tissue) in M-value units; and each CpG was weighted by its cross-tissue variance. The entire set of post-
QC profiled CpGs (N = 754,054) was considered for the analysis. For gene expression, ⍴ was calculated on the mean
expression for each gene (across all samples for a given tissue) in log2(x + 1) transformed transcript per million units
(TPM); and each gene was weighted by its cross-tissue variance. Only genes expressed in at least one of the nine tissues (N 
= 37,686) were considered for the analysis. We performed hierarchical clustering of the tissues using pvclust 2.0.0 50 with
complete linkage and nboot = 1,000.
Expression quantitative trait methylation (eQTM) mapping

We define an eQTM as the association of CpG DNAm with proximal gene expression, considering a ± 1.5 Mb window
centered on the CpG locus, thereby enabling the identification of short- and long-range CpG-gene associations. We analyzed
samples with available DNAm, expression and genotype data (Supplementary Table 1), comprising a total of 490 samples,
from 25 - testis - to 131 - lung - per tissue, excluding kidney cortex due to insufficient sample size (N = 5). We obtained
DNAm residuals by regressing DNAm-derived PEER factors 51 used in cis-mQTL mapping (see below) from inverse-
normalized-transformed DNAm levels, and gene expression residuals by regressing expression-derived PEER factors used
for eQTL mapping in 4 from inverse-normalized-transformed gene expression levels. For each CpG site in each tissue, we
calculated Spearman correlation of DNAm with gene expression residuals of proximal (± 1.5 Mb window) genes. We applied
Bonferroni multiple testing correction to nominal p-values, accounting for multiple genes tested per CpG. Then, we adjusted
for multiple CpGs tested by applying q-value multiple testing correction 52 to the set of top Bonferroni-adjusted p-values per
CpG. We defined significant CpGs involved in eQTMs (eCpGs) at FDR < 0.05, and for those, significant eQTMs were defined
at Bonferroni-adjusted p-value < 0.05. To overcome QTM-mapping limited power due to per-tissue available sample sizes,
we used an approach to perform a cross-tissue QTL analysis by leveraging QTL signal across tissues 29, implemented in
the R package mashr. We assessed eQTM replication for all tissues in the FUSION Skeletal Muscle Study cohort 19.
Replication was assessed by means of π1, which enables the estimation of the true positive rate of findings derived from a
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discovery dataset in a replication dataset 53. See additional details of eQTM identification and characterization in
Supplementary Note.
Quantitative trait loci (QTL) mapping for methylation and gene expression QTLs (mQTLs, eQTLs)

We define mQTLs as proximal variants, i.e. in cis, to a CpG with a significant genotype effect on its DNAm estimates,
considering a ± 500 Kb window from the CpG locus. To assess mQTLs, we considered QC-ed inverse-normalized DNAm
data, generated and presented here as part of the eGTEx project, and QC-ed genotype data derived from GTEx v8 4 filtered at
variant minor allele frequency (MAF) > 0.01 per tissue. For each variant-CpG pair, we fit a linear regression model separately
in each tissue, and tested for significance of genotype on methylation estimates while adjusting for additional known and
unknown factors (see Supplementary Note). We implemented the model in an adaptation of FastQTL 54, available at
https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl, and corrected for multiple testing of variants per CpG 54

and multiple CpGs tested 53, defining significant mQTL CpGs (mCpGs) at FDR < 0.05. An equivalent approach was utilized
to identify eQTLs. Conditional QTL analysis was employed to identify multiple independent mQTLs and eQTLs for mCpGs
and eGenes, respectively; as well as corresponding lead variants for each independent QTL locus. This approach accounts
for allelic heterogeneity (AH), where distinct genetic variants at a locus simultaneously and independently affect
methylation at a given CpG site. For that, we applied a stepwise regression procedure as described in 30; see details in
Supplementary Note. Similarly as in eQTM mapping, we utilized mashr to identify mQTLs and eQTLs detectable after
leveraging QTL signal across tissues. Across the article, we refer to CpGs and genes with at least one significant mQTL or
eQTL as mCpGs and eGenes, respectively; and to mQTL and eQTL significant variants as mVariants and eVariants,
respectively. We assessed mQTL replication in the BEST blood cohort 26 and the FUSION Skeletal Muscle Study cohort 19.

See additional details of mQTL and e QTL identification and characterization in Supplementary Note.
QTL enrichment in genomic annotations

Functional enrichment analyses were performed using torus 55 , similarly to 4 . In brief, the command “torus -d
${qtl_statistics} -annot ${annotation_file} -est --fastqtl” was utilized; where ${qtl_statistics} correspond to QTL-mapping data
for eQTLs (full eQTL-tested gene set per tissue) or mQTLs (subset of 21k mQTL-tested CpGs), and ${annotation_file}
corresponds to QTL-tested annotated variants. Variants were annotated with Ensembl’s Variant Effect Predictor (VEP)
utilizing datasets from several sources: gene regulatory element and open chromatin annotations were obtained from
ENCODE5, gene body annotations were obtained from Ensembl, chromatin state predictions from ROADMAP, TF binding
and CGI annotations were obtained from from UCSC browser (see Obtention and processing of functional genomic data).
Enrichment across tissues was evaluated by modeling single-tissue enrichment estimates (log of odds ratio) with a
random-effects model (rma function, metafor R package). Single-tissue and cross-tissue enrichment estimates are provided
in Supplementary Table 3.

Colocalization of mQTLs with eQTLs

We investigated the associations between mQTLs and eQTLs by means of QTL effect size colocalization with coloc 56

using default priors. For each significantly (PP4 > 0.5) colocalized mQTL-eQTL pair in each tissue, the top-colocalized
e/mVariant was defined as the one with the largest PP4 value. See additional details of mQTL-eQTL colocalization in
Supplementary Note.

Characterization of colocalized mQTL-eQTL loci

mQTL-eQTL concordance in direction of effects

A mQTL-eQTL pair was defined as concordant if the mQTL sign of the top-colocalized e/mVariant matched the
corresponding eQTL sign and discordant otherwise. An exact binomial test was conducted to assess whether the proportion
of discordant/concordant cases differed significantly from 50%, and the null hypothesis (proportion = 53%, P < 2.2e-16) was
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rejected. Subsequently, we assessed whether the discordance/concordance rate varied as a function of mCpG location in
gene regulatory regions, considering promoters and proximal enhancers jointly, distal enhancers and insulators. Gene
regulatory element annotations were derived from ENCODE5 cCREs catalog (see Obtention and processing of functional
genomic data) and details of mCpG annotation are provided in Supplementary Note.

Identification of mQTL-eQTL regulatory pleiotropy

Considering QTLs, we define regulatory pleiotropy as the event of a variant or a set of variants in a QTL region impacting
multiple eGenes and/or mCpGs. In order to characterize the pleiotropic nature of mQTLs, we quantified the number of
mCpGs and eGenes involved in loci harbouring eQTL-mQTL (e/mQTL) colocalizations, and classified mCpGs involved in at
least one significant e/mQTL colocalization (PP4 > 0.50) in four tiers, depending on their mCpG and eGene connectivity
level (Supplementary Fig. 4). Of note, no inference of the nature of the pleiotropic effect, whether vertical or horizontal, is
made in this classification. Tiers are defined as follows; a) Tier 1: mCpGs that colocalize with a single eGene and vice versa
(1:1 connectivity), b) Tier 2: mCpGs that colocalize with multiple eGenes, and each one of those eGenes uniquely colocalize
with that single mCpG (1:m connectivity), c) Tier 3: mCpGs that colocalize with a single eGene, which colocalizes with
multiple mCpGs (n:1 connectivity) and d) Tier 4: mCpGs that colocalize with a multiple eGenes, where at least one of the
eGenes colocalize with multiple mCpGs (n:m connectivity).
Colocalization of QTL with GWAS signal

Colocalization of ovary cancer GWAS with QTL signal of HOXD pleiotropic locus

We hypothesized that the mCpGs and eGenes in the HOXD region may be linked to ovarian cancer risk, and tested it by
means of QTL-GWAS colocalization. Ovary cancer GWAS summary statistics 57 were obtained from the Ovarian Cancer
Association Consortium (OCAC) website http://ocac.ccge.medschl.cam.ac.uk/ and were filtered - not imputed - as in 5.
Considering OCAC GWAS along with QTL statistics from the set of pleiotropic mCpGs and eGenes identified in the HOXD
locus (Fig. 3a), we performed colocalization analysis with coloc 56 using default priors. Considering QTLs statistics,
colocalization was performed based on effect size and associated standard error values; p-values and corresponding
variant MAFs were used for OCAC GWAS data. The probability of one causal variant associated with both traits (PP4) was
used to identify significant (PP4 > 0.50) colocalizations.

Determination of GWAS significant loci

To investigate possible associations between genetically regulated molecular and complex traits, including disease and
‘healthy’ phenotypes, we employed GWAS summary statistics of 87 GWASs; data production and quality control are
described in detail in 5. We identify significant GWAS hit loci (i.e. genomic windows containing GWAS signal) similarly as
described in 5. In brief, the GWAS summary statistics were split into 1,702 approximately LD-independent regions 58

(Supplementary Table 5). Each region was categorized as a significant GWAS hit locus (GWAS hit) provided it
encompassed a non-imputed GWAS significant (P < 5 × 10− 8) variant.

Determination of QTL-GWAS significant loci

For each GWAS and each QTL tissue pair, colocalization was performed with coloc and fastenloc. The latter is an improved
version of enloc 59 and was recently described in multiple works 60,61.

coloc approach

For each GWAS, at each GWAS locus, we identified overlapping (> 1 bp) mCpG loci from each of the 9 analyzed tissues,
considering per-tissue significant (FDR < 0.05) mCpGs resulting from the single-tissue QTL-mapping approach. For each
overlapping mCpG-GWAS region pair, we applied coloc 56 to mQTL along with GWAS summary statistics. For mCpGs with
secondary QTLs, i.e. multiple independent mQTLs, conditional - to independent lead mVariants - QTL signals were also
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tested for colocalization. By this, we prevent putative colocalizations to be missed or miscalculated, since coloc assumes a
single variant to be causal of QTL-GWAS effects 61. Prior probabilities of a variant yielding a) a mQTL association (p1), b) a
GWAS association (p2) and b) a mQTL and a GWAS association (p12) were estimated from fastenloc enrichment values in
an analogous manner as done with enloc in 5 and provided in Supplementary Table 5. Only the regions with at least 50
variants in common between the GWAS and mCpG loci were tested for colocalization. Both for QTLs and GWAS statistics,
colocalization was performed on effect size (effect size) and associated standard error (effect size s.e.) values. Used GWAS
statistics were imputed from available z-score (z), allele frequency (f) and sample size values (N) by effect size ≈ z/( f(1 − 
f)N)^(1/2) and effect size s.e. ≈ effect size / z.

fastenloc approach

First, GWAS posterior inclusion probability (PIP) values were obtained with torus from available z-scores. Then, for each
tissue, the DNAm levels, genotypes and mQTL-mapping covariates for CpGs and corresponding cis windows considered in
the mQTL analysis were processed with dap-g 62. Next, we used fastenloc to obtain regional colocalization probabilities
(RCP) for all tuples of interest (GWAS hit, trait, tissue, mCpG) by subsetting corresponding GWAS hits, and significant
(single-tissue mQTL set: FDR < 0.05) mCpGs from the genome-wide fastenloc output. An equivalent approach was
employed for eQTL-GWAS colocalization; the dap-g pre-computed eQTL annotations from GTEx (v8) data were obtained
from the fastenloc github repository: https://github.com/xqwen/fastenloc. Evaluation of mQTL-GWAS colocalization
approach is described in Supplementary Note.
Characterization of signatures of trait-linked mCpGs

Tissue-specific enrichment in mQTL-GWAS colocalizations

To identify traits with a tissue-specific colocalization enrichment profile, we performed a multi-sample test for equality of
proportions without continuity correction. For each trait with > 5 mQTL-GWAS colocalizations, we compared the observed
proportions of mQTL-GWAS colocalizations per tissue to the overall proportion of colocalizations for all tissues. We
identified traits with a disproportionate amount of colocalizations in at least one tissue at Bonferroni-adjusted P < 0.05. For
these traits, scaled-by-trait colocalization proportions per tissue are shown in Fig. 6a, where tissues and traits were clustered
via complete-linkage hierarchical clustering based on euclidean distance. A two-sided Fisher’s exact test was conducted to
determine significant tissue-trait enrichments at Bonferroni-adjusted P < 0.01, which are indicated by crossed cells in Fig. 6a.
This approach has several limitations. We did not observe tissues of relevance for several traits, possibly due to the
examination of mQTLs derived from only 9 tissues. For certain tissue-trait pairs, the limitedness of the mQTL catalog
examined herein, and the low number of colocalizations identified, may have also impacted the completeness and accuracy
of the identified tissue-specific enrichment profiles. This analysis would benefit from a more powered and exhaustive mQTL
catalog.

Characterization of molecular regulatory pleiotropy of trait-linked mCpGs

We evaluated the enrichment of mVariants corresponding to mQTL-GWAS colocalizations in mVariants regulating multiple
versus single mCpGs. For each mCpG tested for mQTL-GWAS colocalization, we kept the corresponding colocalization
result with the highest coloc PP4 value and the corresponding mVariant. We classified mVariants as pleiotropic if they were
estimated to be causal of multiple mCpGs, or as non-pleiotropic, if they were causal of a single mCpG. Causality was
defined considering dap-g fine-mapping estimates utilized in the fastenloc mQTL-GWAS colocalization approach, and
mQTL credible sets were defined at 90% confidence. We classified mVariants as being also eVariants if they were estimated
to be causal of at least one eGene, estimating eQTL credible sets in an analogous manner to mQTL sets. Significant
enrichment of trait-linked versus trait-unlinked mVariants in multiple-mCpG and eVariant sets was defined at two-sided
Fisher’s exact test P < 0.05. Additionally, we subsetted mCpGs tested for mQTL-GWAS colocalization that were involved in
e/mQTL colocalizations, and classified them into mCpG-eGene pleiotropy tiers (Supplementary Fig. 4). Enrichment of trait-
linked versus trait-unlinked eGene and mCpGs in each tier was estimated at two-sided Fisher’s exact test P < 0.05.
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Characterization of DNAm signatures of trait-linked mCpGs

To evaluate the overlap of trait-linked mCpGs with open chromatin regions, we utilized annotations derived from ENCODE5
open chromatin regions (see Obtention and processing of functional genomic data). See additional details in
Supplementary Note.

We evaluated the putative enrichment of increased disease-risk alleles in gains or losses of DNAm, both across and within
GWAS traits. From the set of 87 GWAS tested for mQTL colocalization, we subsetted colocalization results corresponding to
31 GWAS disease traits with for which at least one significant mQTL colocalization was identified. For each GWAS trait and
mCpG tested for mQTL-GWAS colocalization, we kept the corresponding colocalization result with the highest coloc PP4
value. For each GWAS trait, we classified tested mCpGs into methylation gain or loss categories, based on the sign of the
allelic mQTL effect associated with increased disease risk, i.e. positive GWAS effect. Enrichment of each disease in
methylation gains and losses was determined at Bonferroni-corrected two-sided Fisher’s exact test P < 0.05. No disease was
identified as enriched for DNAm gains or losses. Despite individual traits not being significantly enriched for DNAm change
biases, it is possible that a global bias could be detected when considering all traits at once. To test this hypothesis, each
disease was labelled as ‘DNAm gain’ if the corresponding number of colocalized mCpGs associated to a DNAm gain
outnumbered the DNAm-loss ones, and labelled as ‘DNAm-loss’ otherwise. An exact binomial test was performed to assess
whether the proportion of DNAm-gained or -loss labelled diseases deviated significantly (P < 0.05) from 50%, which was not
the case (P = 0.86).

Characterization of trait-linked mCpGs overlap with gene regulatory regions

Gene regulatory element annotations were derived from ENCODE5 cCREs catalog and gene body element annotations were
derived from obtained from GENCODE (see Obtention and processing of functional genomic data). To annotate mCpGs for
cCRE and gene body elements, we extended the span of their genomic location by +/- 100bps, and checked for overlap ( > = 
1bp) with element regions. Trait-linked mCpGs were classified as eQTL-shared or mQTL-specific (see Supplementary Note:
Evaluation of mQTL-GWAS colocalization). Enrichment significance of eQTL-shared or mQTL-specific trait-linked mCpGs in
each gene regulatory-region or gene body element category was estimated at Fisher’s exact test P < 0.05.

Characterization of trait-linked mCpGs overlap with functional maps

To evaluate the overlap of mQTL-specific trait-linked mCpGs with genomic regions linked to specific genes, we considered
functional maps based on curated regulatory-region to gene target predictions 38,39 and eQTM predictions generated herein.
We extended the genomic location span of mCpGs by +/- 100bps, and checked for overlap ( > = 1bp) with eCpGs and
regulatory regions. For each mCpG, we annotated corresponding regulatory-region gene targets and eCpG-correlated genes;
a particular gene was annotated to a mCpG if overlap was found in one or more functional maps. Annotations were
collapsed at a GWAS hit level by adding up the number of predicted mCpG-gene links corresponding to the locus, hence
providing an estimate of mCpGs that support a gene candidate per trait-associated locus (Supplementary Table 6).

Data availability
All GTEx open-access data, including summary statistics of mQTLs, will be available soon on the GTEx Portal
(https://gtexportal.org/home/datasets). All GTEx protected data are available via dbGaP (accession phs000424.v8). Access
to the raw sequence data is provided through the AnVIL platform (https://gtexportal.org/home/protectedDataAccess). Full
summary statistics of mQTLs, eQTMs and QTL-GWAS colocalizations will be available upon acceptance (zenodo
repository).

Code availability
All analyses were performed with existing open access methods. The adaptation of FastQTL is available at
https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl. fastenloc is available at
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https://github.com/xqwen/fastenloc (version 1.0 was used). Scripts for conditional QTL mapping are available at
https://github.com/funpopgen/multiple_eqtl_mapping. torus is available at https://github.com/xqwen/torus (version
1.0.0.dev was used). mashr is available at https://github.com/stephenslab/mashr (version 0.2.6 was used).
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Figure 1

Characterization of methylomes across tissues. (a) Sample similarity based on DNAm profiles. Dimensionality reduction
was performed with a t-Distributed Stochastic Neighbor Embedding approach (t-SNE). (b) Hierarchical tissue clustering
based on complete methylomes (left panel) and transcriptomes (right panel) of nine tissues (x axis). The molecular
phenotypes displayed (y axis) correspond to the top 20,000 most divergent CpG sites and genes across tissues. DNAm and
gene expression values are column-wise scaled. (c) Contribution (x axis, square-root transformed log(OR)) of selected
factors to eQTM likelihood (presence) for different gene regulatory elements (y axis). Dist.: Distance. OR: Odds Ratio. Factor
units: CpG-gene distance [Kb], eQTM Sign [‘1’ for negative correlation between methylation and expression, ‘0’ otherwise],
CpG DNAm [M-value], gene expression [log2(TPM+1)].
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Figure 2

mQTL discovery and e/mQTL functional mechanism characterization. (a) Number of CpGs with a mQTL (mCpGs) per
tissue, shown with per-tissue mQTL-mapping sample sizes in parentheses. (b) Cross-tissue sharing of mCpGs. Cross-tissue
mean percent of mCpGs per tissue-sharing category is shown in parentheses. (c) QTL enrichment (x-axis) in CpG islands
(CGI), gene body sites and candidate cis-regulatory elements. NC: Non-Coding. CDS: Coding Sequence. UTR: Untranslated
Region. OR: Odds Ratio. (d) QTL enrichment (x axis) in transcription factor binding sites (TFBS). Top (largest OR value) 15
significant TFBS enrichments for mQTLs (left panel) and eQTLs (right panel) are shown. (e) Percent and number (in
parentheses) of mQTL loci relative to eQTL-colocalization category.
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Figure 3

Characterization of HOXD-locus e/mQTL pleiotropy in the ovary. (a) Ovary-tissue mQTL and eQTL landscape for pleiotropic
HOXD locus. Variant rs6433571 is depicted by a grey diamond and its QTL links with mCpGs and eGenes are depicted by
red and blue arches, respectively. Rectangular arches indicate distal QTLs. Regulatory element annotations correspond to
ENCODE candidate cis-Regulatory Elements (cCREs): promoters are shown in red, proximal and distal enhancers in orange
and yellow, respectively, and CTCF-only regions (putative insulators) in blue. Dashed and solid grey lines correspond to gene
transcription start sites and variant rs6433571 location, respectively. (b) Cross-tissue expression levels, in transcripts per
million (TPM), of eGenes involved in the HOXD pleiotropic QTL locus identified in ovary tissue. (c-d) QTL effect size of
variant rs6433571 minor allele G in identified HOXD-locus pleiotropic eGenes (c) and in mCpGs (d) per tissue. Grey-colored
cells in (c) correspond to genes below expressed threshold in a particular tissue, hence not tested for eQTL signal. For
panels (b-d), complete-linkage hierarchical clustering based on euclidean distance was performed for tissues and molecular
phenotypes.
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Figure 4

Colocalization of e/mQTLs with GWAS traits. Venn Diagram represents the overlap between colocalized GWAS hits per QTL
type. Bar plot represents the number of colocalized GWAS hits (y axis, square-root transformed) per GWAS trait (x axis), trait
class and QTL type. ‘c.’ stands for cell counts.
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Figure 5

Trait-linked e/mQTLs. (a) Association p-values in the TERT locus for a breast cancer GWAS (top panel) and mQTL signal in
ovary (bottom panel) (b) Genotype-phenotype association p-values of the MEG9 locus. Panels illustrate GWAS signal for
body mass index (top), cg05029961 primary (middle) and secondary (bottom) mQTL signal in ovary tissue. Secondary
mQTL association was obtained adjusting for the top significant variant of primary mQTL signal. Small nucleolar RNA loci
(snoRNAs) and microRNA loci are depicted in blue and red, respectively. (c) Genotype-phenotype association p-values of the
NTN4 locus. Panels illustrate GWAS signal for breast cancer (top), cg08535361 mQTL signal (middle) and NTN4 eQTL
signal (bottom). (d) Genotype-phenotype association p-values of the MYO9B locus. Panels illustrate GWAS signal for
hypertension (top), cg19418318 mQTL signal (middle) and MYO9B eQTL signal (bottom) in prostate. (e) Genotype-
phenotype association p-values of the EFEMP2 locus. Top panels illustrate primary (left) and secondary (right) GWAS
signals for asthma. Middle and bottom panels illustrate cg14030993 mQTL and EFEMP2 eQTL signal respectively. For all
panels, top GWAS-colocalized e/mQTL is typed in bold, linkage disequilibrium between loci is quantified by squared
Pearson coefficient of correlation (r2), and colocalization probability (PP4) of mQTL with GWAS signal is shown. In panels
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(a), (c) and (d), the diamond-shaped point represents the top significant mQTL variant, in panel (b) it represents the top
significant secondary QTL variant, in panel (e) it represents either the top significant mQTL (left) or eQTL (right) variant.

Figure 6

Characteristics of trait-linked mQTLs. (a) Proportion of colocalized mQTLs with GWAS hits per tissue (y axis) and GWAS
trait (x axis) scaled by GWAS trait. GWAS traits are clustered by trait-wise scaled colocalization proportion values.
Significant (Fisher’s exact test FDR < 0.01) tissue-trait enrichments are labelled with a black cross. ‘c.’ stands for cell counts.
‘coloc.’ stands for colocalization. (b) Trait-linked mCpG enrichment (x-axis) in gene body regions and candidate cis-
regulatory elements, stratified by QTL-GWAS colocalization group (see Fig. 4). CDS: Coding Sequence. UTR: Untranslated
Region. OR: Odds Ratio.
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