Data analysis
For each log, timber volume recovery and value recovery of each applicable sawing pattern were calculated using equations ii and iii respectively.
$$\:{T}_{y}=\:\frac{{P}_{y}}{{V}_{l}}\times\:100\%\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[ii\right]\:\:\:\:\:$$
$$\:{R}_{y}=\:\frac{\sum\:_{i}{P}_{i}{N}_{iy}}{{V}_{l}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[iii\right]\:\:\:\:\:$$
Where: Ty = timber volume recovery obtained from a log using sawing pattern y, Ry = timber value recovery obtained from a log sawn using sawing pattern y, Vl = log volume (m3) obtained from log volume table of Pinus caribaea based on small end diameter and length, Py = timber volume (m3) produced from a log using sawing pattern y, Pi = price per timber piece (UGX) of size i, Ni = number of pieces of timber of size i produced using sawing pattern y.
Timber volume produced from a log using a given sawing pattern was calculated from Equation iv.
$$\:{P}_{y}=\:\frac{\sum\:_{i}{n}_{i}{w}_{i}{h}_{i}{l}_{i}}{Q}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[iv\right]$$
Where: ni= number of pieces of timber of size i sawn, wi = nominal width (mm) of timber of size i sawn, hi = nominal thickness (mm) of timber of size i sawn, li = length (mm) of timber of size i sawn, Q = conversion factor (1x106) from mm3 to m3.
A sawing pattern was a combination of timber size as center piece/s and any corresponding extractable timber as either side, top, or bottom pieces or a combination of them. For each log, possible sawing patterns were developed following the sawing method (cant sawing) used by the study sawmill. The study adapted and/or modified mathematical algorithms from Maness and Adams (1991) and Ngobi (2019) and developed sawing patterns in three steps indicated below.
Step 1: Determining the maximum number of center pieces. For each sample log, the length (Cl), width (Cw) and height (Ch) of possible center pieces that could be extracted were subjected to constraints in equations v, vi and vii respectively.
$$\:{C}_{l}\:\le\:l\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[v\right]$$
$$\:{C}_{w}<sed\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[vi\right]$$
$$\:{C}_{h}\le\:2{\{{r}^{2}-{\left(0.5\times\:{C}_{w}\right)}^{2}\}}^{0.5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[vii\right]$$
Where: l = log length, sed = log small end diameter under the bark, r = radius of log small end diameter under the bark.
The length of the cant/center piece had to be at most equal to the log length (Equation v) whereas the width must be less than the small end diameter of the log under the bark (Equation vi). Equation vii was formulated by Maness and Adams (1991) using Pythagorean Theorem and required that the corresponding thickness of the cant be at most equal to the highest rectangle of width (Cw ) that can fit into a circle repsenting the small end dimeter under the bark (sed).
Small end diameter under the bark was obtained from Equation viii as in Sedmíková et al. (2020).
$$\:sed=\:\:\:\frac{{sed}_{1}\:\:-2*b\:}{c}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[viii\right]$$
Where: sed1 = log small end diameter (cm) measured over the bark, c = conversion factor from cm to mm. Radius of log small end diameter under the bark was obtained by halving sed.
For each timber size that could be extracted as center piece, the maximum number of pieces were obtained from Equation ix as in Maness and Adams (1991).
$$\:n=\:\:\:\frac{2{\{{r}^{2}-{\left(0.5\times\:cw\right)}^{2}\}}^{0.5}\:+s}{ch+s}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[ix\right]$$
Where: s = kerf width (mm), n = maximum number of center pieces of timber with width (cw) and thickness (ch). n was rounded off, down to the nearest whole number when found to a floating figure since the number of timber pieces must be an integer.
Kerf width was obtained from Equation x as in Ngobi (2019)
$$\:s=b+2\times\:s\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[x\right]$$
Where: b = blade thickness (mm), s = blade setting (mm)
Step 2: Determining possible side pieces to be extracted. The study assumed minimal log eccentricity so that the two resulting side slabs after extracting the center piece/s were of equal size. The timber size that could be extracted from the side slabs as side piece/s was constrained by its thickness (Sh) and width (Sw), width of the center piece (cw) and radius of small log end diameter (r) as in equation xi.
$$\:{{\left\{\right(0.5\:\times\:cw\:+p*s\:+{S}_{{h}_{r-1}\:\:}+{S}_{{h}_{r}\:\:}\:)}^{2}\:+{\left(0.5\times\:\:{S}_{{w}_{r}}\right)}^{2}\}}^{0.5\:}<r\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[xi\right]$$
p represented the position of side piece i.e., 1 for inner most side piece extracted next to center piece, 2 for second sidepiece extracted after the inner most piece, 3 for third sidepiece et-cetera. The physical meaning of Equation xi was explained in Ngobi (2019).
Step 3: Determining possible top and bottom pieces in each sawing pattern. Timber pieces which were narrower and/or thinner than centers pieces and could be extracted from the top and bottom slabs as top and bottom pieces were subjected to similar constraints as side pieces. However, the planes of center pieces were reversed as explained in Ngobi (2019) and indicated in equation xii.
$$\:{{\left\{\right(0.5*(n+\left(n-1\right)*s)+r*s\:+\:{tb}_{{w}_{r-1}\:\:}+{tb}_{{w}_{r}\:\:})}^{2}\:+{(0.5\times\:{tb}_{{h}_{r}})}^{2}\}}^{0.5\:}<R\:\:\:\:\:\:\:\:\left[xii\right]$$
Where: tbw = width of top/bottom piece, tbh= thickness of top/bottom piece, r-1 = preceding top/bottom piece if any.
PHP programming language was used to code the mathematical algorithm and generate possible sawing patterns for each sampled log. For each log, the sawing pattern that yielded the highest timber volume recovery (Tmax) from equation ii above was identified. This was the volume pattern and the resulting volume recovery was the recovery considered under the volume sawing strategy. The corresponding value recovery (Ra) of volume pattern was obtained using equation xiii.
$$\:{R}_{a}=\:\frac{\sum\:_{i}{P}_{i}{N}_{ia}}{{V}_{l}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[xiii\right]\:\:\:\:\:$$
Where: Nia = number of timber of size i produced using the volume pattern.
On the other hand, the sawing pattern that yielded the highest timber value recovery (Rmax) as obtained in equation iii above was the value pattern and was considered under the value sawing strategy. The corresponding volume recovery (Ta) of the value pattern was obtained using equation xiv.
$$\:{T}_{a}=\:\frac{{P}_{a}}{{V}_{l}}\times\:100\%\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[xiv\right]$$
Where: Pa = timber volume yielded by the value pattern.
Cluster analysis was used to group logs into classes based on small end diameter. For each log class, timber volume recovery (Tr) and value recovery (Rr) under the volume sawing strategy were calculated using equations xv and xvi respectively.
$$\:{T}_{r}=\:\:\:\:\:\:\:\:\:\frac{\sum\:{T}_{max}}{{N}_{r}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[xv\right]$$
$$\:{R}_{r}\:=\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\sum\:{R}_{av}}{{N}_{r}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[xvi\right]$$
Where: Nr = number of logs in the log class r, Rav = value recovery of volume pattern for log v in class r.
Timber value recovery and volume recovery under the value sawing strategy were also calculated using a similar approach as in equations xv and xvi respectively. The weighted timber volume recovery (Ts) and value recovery (Rs) of each sawmill under the volume sawing strategy were calculated using equations xvii and xviii respectively.
$$\:{T}_{s}=\:\:\sum\:_{r}{T}_{r}*\frac{{V}_{r}}{V}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[xvii\right]$$
$$\:{R}_{s}=\:\:\sum\:_{r}{R}_{r}*\frac{{V}_{r}}{V}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[xviii\right]$$
Where: Vr= Total volume of logs (m3) in log class r, V = Total volume of logs (m3) sampled at the sawmill. The weighted timber volume and value recovery of each sawmill under the value sawing strategy were calculated using a similar approach as in equations and xvii and xviii respectively.
The difference in timber volume recovery between the volume and value sawing strategy was tested using a paired t-test at 5% significance level. A paired t-test was also used to test the difference in timber value recovery between the volume and value sawing strategy.