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Abstract
Background: Our previous study found that the depletion of macrophages led to the downregulation of
insulin-like growth factor 1 (IGF-1) and impaired muscle regeneration after contusion. It was speculated
that IGF-1 injection might improve the muscle repair impairment induced by macrophage depletion.
Therefore, we explored whether injected IGF-1 plays an important role in improving impaired muscle
repair.

Methods: Animal models of muscle contusion and macrophage depletion with and without IGF-1
injection were established with gastrocnemius muscles in mice. Comprehensive histomorphological and
genetic analyses were performed on the contused muscles after macrophage depletion and IGF-1
injection.

Results: IGF-1 injection could promote the partial recovery of macrophage subpopulations (CD206) and
the expression of vascular endothelial growth factor (VEGF) and angiopoietin -1 (Angpt-1) after
macrophage depletion. However, after IGF-1 injection, the levels of regenerative myofibers and fibrosis, as
well as the levels of proinflammatory macrophages (CD68) and the expression of muscle differentiation
factor (MyoD), myogenin, VEGF and Angpt-1 still did not return to the levels found after simple muscle
contusion in the late stage of repair.

Conclusions: These results suggest that IGF-1 injection did not improve the impaired regeneration and
repair of contused muscles induced by macrophage depletion.

Introduction
Contusion was one of the most common injuries in sports. After muscle contusion, the repair process of
muscle regeneration or fibrosis occurs in the injured tissue. Many repair-related factors, such as myogenic
regulatory factors, muscle regeneration-related regulatory factors, angiogenesis regulatory factors,
granulocytes, and macrophages, also have corresponding changes (1). In many previous studies, through
exogenous changes in the above-mentioned factors, such as hyperbaric oxygen, immunocytes, stem cell
transplantation, fibrosis inhibitors, and muscle regeneration-related growth factors, researchers have
attempted to improve muscle regeneration and repair (2–6).

Our previous study found that the depletion of macrophages led to the downregulation of IGF-1 and
impaired muscle regeneration (7, 8). Furthermore, some studies indicated that macrophage depletion
impaired regeneration and repair following muscle injury (9–11). Moreover, some studies also showed
that after muscle injury, myeloid cell-derived IGF-1 could drive the proliferation of activated satellite cells
and promote a shift in the macrophage phenotype from an M1-biased to an M2-biased population. Then,
nonmyeloid, nonmuscle cells-derived IGF-1 could promote myoblast differentiation into myotubes and
subsequent growth into muscle fibers (12, 13). Therefore, it was speculated that the impairment of
muscle regeneration after macrophage depletion might be related to the downregulation of IGF-1 induced
by macrophage depletion.
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Therefore, we hypothesized that IGF-1 injection might improve the muscle regeneration impairment
induced by macrophage depletion to a certain extent. To explore this concept, we constructed a muscle
contusion and macrophage depletion mouse model and injected IGF-1 into the contused muscle of the
mice. The histomorphology, fibrosis, and levels of macrophages and expression of macrophage subtype
surface markers, myogenic regulatory factors, and angiogenesis regulatory factors were tested in
contused skeletal muscle.

Methods
Animals

A total of 140 male wild-type mice (specific pathogen-free C57BL/6; purchased from Shanghai SLAC
Laboratory Animal Co., Ltd, Shanghai, China) between 7 and 9 weeks of age and weighing between 18.7
and 23.1 g were housed under pathogen-free conditions at a constant temperature of 25℃, and ~ 50%
relative humidity, with a light-dark cycle of 12:12 hours and free access to pellet food and water. All
experimental protocols were approved by the Ethics Review Committee for Animal Experimentation of
Shanghai University of Sports (Reference No. 2014025).

Experimental design

The mice were randomly assigned to 1 of 3 groups according to the following treatment: (1)
intraperitoneal injection (ip) of phosphate-buffered saline (PBS) liposomes and intramuscular injection
(im) of PBS (contusion and placebo treatment in the Cp group; n = 60); (2) clodronate liposomes (ip)
(contusion and macrophage depletion in the CD group; n = 60); and (3) clodronate liposomes (ip) and IGF-
1 (im) (contusion with macrophage depletion and IGF-1 injection in the CDI group; n = 48). In the C, CD
and CDI groups, each mouse suffered bilateral contusions of the gastrocnemius muscles (GMs), except
for the Con group. In the Cp group, the mice in the Con group (sampled before contusion) had no
contusion but received placebo treatment (ip and im), whereas the mice in the 1 d, 3 d, 7 d, and 14 d
groups (sampled at the following time points after contusion: 1 d, 3 d, 7 d, and 14 d) received contusions
and placebo injection. In the CD group, the mice in the Con group had no contusions but received
macrophage depletion, whereas the mice in the 1 d, 3 d, 7 d, and 14 d groups received contusions and
macrophage depletion. In the CDI group, the mice in the 1 d, 3 d, 7 d, and 14 d groups received contusions
combined with macrophage depletion and IGF-1 injection. However, the mice of the Con group of the CDI
group received the same treatment as those of the Con group of the CD group; therefore, the Con data
used for the CD and CDI groups were the same. In the Con group, 1 d, 3 d, 7 d, and 14 d groups, 12 mice
per group were euthanized and evaluated (histology: n = 4; gene expression: n = 8) (Scheme 1).

Animal model of skeletal muscle contusion

Skeletal muscle contusion of bilateral GMs in the mice was created as described previously (14–16). The
animals were anesthetized using 5% chloral hydrate (0.01–0.02 ml/g body weight) by intraperitoneal
injection. Each mouse’s hind limb was positioned by extending the knee and plantarflexing the ankle 90°.
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A stainless steel ball (16.8 g, diameter: 15.9 mm) was dropped from a height of 125 cm through a tube
(interior diameter of tube: 16 mm) onto the impactor (a surface of 28.26 mm2) that made contact with
the midportion of GMs (17, 18). This technique simulated a high-energy blunt injury that left a large
hematoma, which is usually followed by muscle regeneration, thus closely mimicking the initial
inflammatory response and subsequent muscle repair observed in humans (4, 19–21). The mice were
sacrificed, and the GMs were harvested at different time points after contusion (Con, 1 d, 3 d, 7 d, and 14
d) for evaluating the repair of contused muscles (Scheme 1). To illustrate the characteristics of
subsequent changes, with reference to previous studies (1, 12) and the status of this study, the first and
third days after contusion were defined as the initial stage of injury repair, the seventh day as the interim
stage of repair, and the fourteenth day as the late stage of repair.

Injection of liposomes

For macrophage depletion, the mice were treated with clodronate-containing liposomes (5 mg/ml) or
PBS-containing liposomes (purchased from Liposoma B.V., Amsterdam, Netherlands) given by
intraperitoneal injection 2 d before GM contusion (0.2 ml ip) and then on 0 d, 3 d, 6 d, 9 d, and 12 d after
GMs contusion (0.1 ml ip) as previously described (22–24). Flow cytometry using macrophage marker
antibodies (F4/80 and CD-11b) was used to verify the extent of macrophage depletion. Verification
results can be found in preresearch papers. The data showed that macrophages were significantly
reduced by at least 55% in the clodronate liposomes-treated mice as compared to the control mice (24,
25).

Injection of IGF-1

For IGF-I (purchased from R&D Systems, Inc.) treatment, each mouse in the CDI group received an
intramuscular injection of IGF-I (0.5 µg / 20 µl / muscle; R&D Systems, Inc., USA; Lot: DGV2514072) into
the bilateral GMs 3 consecutive times (0 d, 1 d, and 2 d) after contusion. In the Cp and CD groups, the
muscles were injected only with PBS (0.01 M / 20 µl / muscle). The protocol was modified based on
previously described studies (26–28).

Histomorphological evaluation of muscle regeneration and fibrosis

After the mice were euthanized at 14 d after contusion, bilateral gastrocnemius muscles were snap
immersed at 4 °C in 4% paraformaldehyde (precooled in the refrigerator) for 24 hours until they were
routinely paraffin-embedded and sectioned. Serial cross-sections of 4-µm thickness were stained with
hematoxylin and eosin to evaluate the number, area and diameter of regenerative myofibers in the images
obtained using a BX53 optical microscope that was connected to a spot image capture system DP80
digital camera (Olympus Corporation). The total number of centrally nucleated myofibers, which
represented the regenerating myofibers, was quantified by counting the centrally nucleated myofibers in 3
representative 200 × high-powered fields (hpf) from each sample as previously described (27, 29–31).
The total areas (the sum of the cross-sectional area) of the regenerating myofibers were measured.
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Moreover, the total diameter (the sum of the minor axis diameters) of the regenerating myofibers was
measured as previously described (24, 29).

A Masson modified trichrome stain kit was used to stain the fibrotic tissue within the injury sites at 14 d
after contusion. After staining, the fibrotic areas of 40 × low-powered images that included a complete
area of damage were calculated to estimate the areas of new fibrotic tissue using Image-Pro Plus 6.0
(Media Cybernetics, Inc.) as previously described (27, 29). Then, the results of the control group and each
of the treatment groups were compared.

Immunofluorescence staining

Immunofluorescence staining was performed to detect MyoD and myogenin at 14 d after contusion using
the modified protocols of Abcam. GM sections were incubated with 10% normal goat serum (NGS)
blocking buffer for 2 hours at room temperature (RT) and with the MyoD (Santa Cruz, 1:100) and
myogenin (Abcam, 1:100) primary antibodies overnight at 4 °C. The sections were washed three times
with Tris-buffered saline (TBS) for 5 min per wash and then incubated with a goat anti-rabbit IgG
secondary antibody (Abcam, 1:500) for 1 hour at RT. After washing three times with TBS, the sections
were incubated with 4, 6-diamidino-2-phenylindole (DAPI, 1:500, Beyotime Biotech, Co., Ltd.) for 5 min at
RT, washed three times with TBS and then sealed with an anti-quenching sealing solution. Using a 20 × 
lens objective (LSM700, Zeiss), the images were captured for each muscle section. The average
immunofluorescence intensity was semiquantitatively analyzed using ImageJ 1.52 (National Institutes of
Health, United States) and Image-Pro Plus 6.0 (Media Cybernetics, Inc.).

RNA isolation and Reverse-Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated from the GMs in TRIzol Reagent (Invitrogen, Thermo Fisher Scientific) using a
modified guanidinium isothiocyanate-CsCl method, and then equal amounts of RNA (2 µg) were used to
generate cDNA using the RevertAidTM First Strand cDNA Synthesis Kit (Invitrogen, Thermo Fisher
Scientific) (32). The reaction was carried out at 25 °C for 5 min followed by another 60 min at 42 °C and
was terminated by the deactivation of the enzyme at 70 °C for 5 min. Control reactions lacking either
reverse transcriptase or template were included to assess the carry-over of genomic DNA and nonspecific
contamination (25).

Relative Quantitative Real-time PCR (Rt-qPCR)

Real-time quantitative PCR was performed in a StepOnePlus PCR-Cycler (Life Technologies) using
ChamQ Universal SYBR qPCR master mix (Vazyme Biotech Co., Ltd) for mouse F4/80, CD68, CD163,
CD206, MyoD, Myf5, myogenin, Myf6, HIF-1α, VEGF, Angpt-1 and GAPDH (each primer used for Rt-qPCR is
in Table 1). The reactions were carried out with initial denaturation at 95 °C for 30 sec, 40 cycles of
denaturation at 95 °C for 10 sec and annealing/extension at 60 °C for 30 sec, and melting curve
generation (at 95 °C for 15 sec, 60 °C for 60 sec and 95 °C for 15 sec). The cycle threshold (CT, the
number of cycles to reach the threshold of detection) was determined for each reaction, and the levels of
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the target mRNAs were quantified relative to the mRNA level of the Con group in the Cp group as baseline
with GAPDH as the housekeeping gene using the 2−△△CT method (25, 33).

Statistical analysis
All data were presented as and analyzed using IBM SPSS Statistics (version 23, IBM, Armonk,
NY, USA). Factorial analysis of Multiway ANOVA was performed to determine if there were any effects of
the interactions between any two factors among time, depletion and IGF-1. If any significant effects were
evident (ρ < 0.05), one-way ANOVA was used to compare the significant differences in different time
points after contusion (34). Post hoc multiple comparisons were performed using the Scheffe test if
equal variances were assumed or using the Games-Howell test if equal variances were not assumed. To
compare the significant differences among different treatment groups at the corresponding time point, an
independent-samples t-test was used if there were no group-time interactions. Otherwise, one-way ANOVA
was still used. Differences between values were considered statistically significant when ρ-values were
less than 0.05.

Table 1
Primers used for Rt-qPCR

Target gene Forward primer sequences Reverse primer sequences

F4/80 5’-AACATGCAACCTGCCACAAC-3’ 5’-TTCACAGGATTCGTCCAGGC-3’

CD68 5’-CAAAGCTTCTGCTGTGGAAAT-3’ 5’-GACTGGTCACGGTTGCAAG-3’

CD163 5’-GCAAAAACTGGCAGTGGG-3’ 5’-GTCAAAATCACAGACGGAGC-3’

CD206 5’-GGATTGTGGAGCAGATGGAAG-3’ 5’-CTTGAATGGAAATGCACAGAC-3’

MyoD 5’-GAGCGCATCTCCACAGACAG-3’ 5’-AAATCGCATTGGGGTTTGAG-3’

Myf5 5’-GGAATGCCATCCGCTACATT-3’ 5’-CGTCAGAGCAGTTGGAGGTG-3’

Myogenin 5’-CCAGTACATTGAGCGCCTAC-3’ 5’-ACCGAACTCCAGTGCATTGC-3’

Myf6 5’-CCTCAGCCTCCAGCAGTCTT-3’ 5’-TTCTCCACCACCTCCTCCAC-3’

HIF-1α 5’-GGCGAGAACGAGAAGAAAAAGATGA − 3’ 5’- GCTCACATTGTGGGGAAGTGG − 3’

VEGF 5’- TAACAGTGAAGCCCTGGAGTG − 3’ 5’- TTTGACCCTTTCCCTTTCCTCG-3’

Angpt-1 5’- AACCGGATTCAACATGGGCA − 3’ 5’- GAGCGTTGGTGTTGTACTGC − 3’

GAPDH 5’-ACTCCACTCACGGCAAATTC-3’ 5’-TCTCCATGGTGGTGAAGACA-3’

Results
Effect of clodronate-containing liposomes on macrophage in injured skeletal muscle

−

χ ±SEM
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Compared with simple muscle contusion, total macrophages (F4/80 mRNA) after macrophages depletion
was significantly inhibited (ρ < 0.05, Fig. 1a and Fig. 2). Consistent with our previous studies, the results
showed that macrophages were effectively depleted (25). Even so, the cellular immune response after
contusion with macrophage depletion and IGF-1 injection, was improved to some extent, and total
macrophages (F4/80 mRNA), proinflammatory macrophages (CD68 mRNA), anti-inflammatory
macrophages (CD163 and CD206 mRNA) increased significantly (ρ < 0.05, Fig. 1a-d and Fig. 2), detailed
in the undermentioned results and discussion of ‘Macrophages and Their Subtypes’.

Effect of IGF-1 injection on muscle regeneration after macrophage depletion in contused skeletal muscle

The number, area, and diameter of centrally nucleated myofibers at the site of injury were measured and
compared in the Cp, CD and CDI groups at 14 d after contusion. The sums of the numbers (348 ± 37.15
vs. 706 ± 63.64, ρ < 0.05), areas (36055 ± 7157.94 vs. 103462 ± 17145.27, ρ < 0.01), and diameters (3319 
± 503.19 vs. 7927 ± 991.20, ρ < 0.05) of regenerating myofibers in the CD group were significantly reduced
compared with those in the Cp group. However, compared with the sums of the numbers, areas and
diameters of regenerating myofibers in the CD group, after IGF-1 injection, those in the CDI group were not
increased significantly (ρ > 0.05, Fig. 3).

Effect of IGF-1 injection on myogenic regulatory factors after macrophage depletion in contused skeletal
muscles

Compared with the expression levels before contusion in the Cp group, those of MyoD, myogenic factor 5
(Myf5) and myogenin mRNA before contusion in the CD and CDI groups were increased significantly (ρ < 
0.01, Fig. 4a-c). Moreover, compared with the expression levels at the corresponding time point in the Cp
group, those of MyoD mRNA at 3 d, Myf5 mRNA at 3 d and 14 d, myogenin mRNA at 14 d and myogenic
factor 6 (Myf6) mRNA at 1 d and 3 d in the CD group were increased significantly (ρ < 0.05, Fig. 4a-d).
Moreover, the expression of MyoD and myogenin mRNA at 14 d in the CDI group also increased
significantly (ρ < 0.001, Fig. 4a, c). The immunofluorescence staining also showed similar results, which
showed that the expression of MyoD and Myogenin in CDI group was not reduced significantly compared
with CD group 14 days after injury (ρ > 0.05, Fig. 5). Furthermore, compared with the expression levels in
the CD group, after IGF-1 injection, those of MyoD mRNA at 1 d, 7 d and 14 d were increased significantly
(ρ < 0.05), but Myf5 mRNA at 3 d, 7 d and 14 d was reduced significantly (ρ < 0.01, Fig. 4a, b).

Effect of IGF-1 injection on muscle fibrosis after macrophage depletion in contused skeletal muscle

The areas of fibrotic tissue at the site of injury were measured and compared in the Cp, CD and CDI
groups at 14 d after contusion. The areas of fibrotic tissue in the CD group (3048 ± 857.20 vs. 496 ± 
162.06, ρ < 0.05) were increased significantly compared with those in the Cp group. However, compared
with the areas of fibrotic tissue in the CD group, after IGF-1 injection, those in the CDI group were not
reduced significantly (ρ > 0.05, Fig. 6).
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Effect of IGF-1 injection on macrophages and their subtypes after macrophage depletion in contused
skeletal muscles

Compared with the expression levels at the corresponding time point in the Cp group, the expression of
F4/80 mRNA in the CD group at 3 d, 7 d, and 14 d after contusion was reduced significantly (ρ < 0.05,
Fig. 1a and Fig. 2). Namely, total macrophages (F4/80 mRNA) after macrophage depletion were
significantly inhibited. However, compared with the expression levels in the CD group, after IGF-1 injection,
the expression of F4/80 mRNA in the CDI group at 3 d, 7 d and 14 d after contusion was increased
significantly (ρ < 0.05, Fig. 1a and Fig. 2); even the expression of F4/80 mRNA in the CDI group at 3 d and
14 d after contusion was higher than that in the Cp group (ρ < 0.05, Fig. 1a).

However, compared with that in the CD group, after IGF-1 injection, the expression of CD68 mRNA in any
stages of repair in the CDI group had no significant change (ρ > 0.05), whereas the expression of CD163
mRNA at 3 d and CD206 mRNA at 1 d and 3 d in the CDI group was increased significantly (ρ < 0.01,
Fig. 1b-d). Even compared with the expression levels in the Cp group, those of CD68 and CD206 mRNA at
14 d in the CDI group were increased significantly (ρ < 0.05), whereas the expression of CD163 mRNA at
14 d in the CDI group was reduced significantly (ρ < 0.01, Fig. 1b-d). Namely, the increases in
macrophages after IGF-1 injection showed different degrees of increase in M1 and M2 macrophages.

Effect of IGF-1 injection on angiogenesis regulatory factors after macrophage depletion in contused
skeletal muscles

The expression of hypoxia inducible factor − 1α (HIF-1α) and VEGF mRNA before contusion in the CD and
CDI groups was increased significantly compared with those before contusion in the Cp group (ρ < 0.05,
Fig. 7a, b). Compared with the expression levels in the Con group of the CD group, the expression of HIF-
1α mRNA at 1 d and 3 d and Angpt-1 mRNA at 3 d and 7 d in the CD group were increased significantly (ρ 
< 0.05), but those of VEGF mRNA at 1 d, 3 d, 7 d and 14 d and Angpt-1 mRNA at 14 d were reduced
significantly (ρ < 0.05, Fig. 7a-c).

Moreover, compared with the expression levels at the corresponding time point in the Cp group, those of
HIF-1α mRNA at 1 d and VEGF mRNA at 1 d in the CD group were increased significantly (ρ < 0.01), but
those of VEGF mRNA at 14 d and Angpt-1 mRNA at 1 d, 3 d, 7 d and 14 d in the CD group were reduced
significantly (ρ < 0.01, Fig. 7a-c).

Furthermore, compared with the expression levels in the CD group, those of HIF-1α mRNA at 1 d, 3 d, 7 d
and 14 d and VEGF mRNA at 1 d in the CDI group were reduced significantly (ρ < 0.05), but the expression
levels of VEGF mRNA at 14 d and Angpt-1 mRNA at 1 d, 3 d, 7 d and 14 d in the CDI group were increased
significantly (ρ < 0.001, Fig. 7a-c). In addition, compared with the expression levels in the Cp group, those
of HIF-1α, VEGF and Angpt-1 mRNA at 14 d in the CDI group were reduced significantly (ρ < 0.001, Fig. 7a-
c).

Discussion
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IGF-1 injection did not improve the reduced regenerative myofibers induced by macrophage depletion in
contused muscles

In the current study, the regenerative myofibers in contused muscles after macrophage depletion were
fewer than those after simple muscle contusion (Fig. 3). This result was consistent with our previous
studies (7, 8, 25, 35) and those of others (24, 36, 37). Namely, macrophage depletion impaired injured
muscle regeneration and delayed muscle repair, confirming that macrophages were the necessary
functional requirement for efficient repair (9, 11, 38, 39). However, after IGF-1 injection, impaired muscle
regeneration did not improve (Fig. 3). Although IGF-1 supplementation could improve injured muscle
regeneration by activating the proliferation of satellite cells and promoting the transformation of the
macrophage phenotype from M1 to M2 (5, 12, 26), in contrast, activated macrophages could secrete
cytokines such as IGF-1 (9, 12, 26, 40, 41). Macrophages and IGF-1 need to achieve corresponding
spatiotemporal coordination to play their appropriate roles. In this study, IGF-1 injection did not improve
the impairment of muscle regeneration induced by macrophage depletion. This might be because, if the
macrophages had been depleted continuously, IGF-1 supplementation could not function as the whole
remedy for the vital role of macrophages in muscle repair. The corresponding mechanism will be
analyzed and discussed in the aftermentioned changes of muscle satellite cell proliferation,
differentiation markers and macrophage subsets.

IGF-1 injection did not improve the delayed repair of contused muscles induced by macrophage depletion
as determined by MRFs increases, especially in the late stage of repair

Myogenic regulatory factors (MRFs) regulate the proliferation and differentiation of skeletal muscle cells;
MyoD and Myf5 act as determining factors in the initial stage of myogenic differentiation, and their
expression triggers the production of myogenin and Myf6, which act to permit terminal differentiation of
myoblasts into myocytes, leading to fused myotubes (42–45). Through macrophage depletion before
muscle contusion, the mRNA expression of MyoD, Myf5, and myogenin in healthy muscle tissue was
increased significantly (Fig. 4a-c). This might be because macrophage depletion produced changes in
basic levels of anti-inflammatory cytokines, which lead to changes in these MRFs in the initial stage of
repair.

Moreover, compared with the expression levels after simple muscle contusion, those of MyoD, Myf5,
myogenin, and Myf6 were increased significantly at different time points after macrophage depletion
(such as Myf5 and myogenin in the late stage) (Fig. 4a-d). The enhancement of myoblast proliferation
and differentiation, especially in the late stage of repair, suggests that muscle regeneration and repair
were delayed by macrophage depletion. In addition, the increased mRNA and protein expression of MyoD
and myogenin at 14 d postinjury after IGF-1 injection also suggests that the repair of contused muscle
was still delayed even after IGF-1 injection (Fig. 4a, c; Fig. 5).

Furthermore, compared with that after macrophage depletion, the mRNA expression of MyoD after IGF-1
injection in the interim and late stages of repair was increased significantly (Fig. 4a). In contrast, the
mRNA expression of Myf5 after IGF-1 injection was significantly reduced (Fig. 4b). Namely, IGF-1 injection
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could reduce the increase in Myf5 induced by macrophage depletion. In light of these results, we
speculated that IGF-1 might coordinate the proliferation and initial differentiation of myoblasts through
both MyoD and Myf5 to make the response moderate (44, 46, 47).

IGF-1 injection did not improve the aggravated muscle fibrosis induced by macrophage depletion in
contused muscles

In previous studies, macrophages, including distinct macrophage subpopulations, were found to act in
both profibrotic and antifibrotic capacity (48). Most studies suggest that proinflammatory macrophages
are essential mediators of fibrosis by managing debridement (39, 49), while anti-inflammatory
macrophages could ameliorate fibrosis by antagonizing proinflammatory macrophages, reducing
extracellular matrix production and competing against neighboring immune cells for nutrients (38, 39,
50–53). In the current study, macrophage depletion resulted in a significant increase in fibrosis after
muscle contusion (Fig. 6). This might be because proinflammatory macrophage depletion in the initial
stage greatly diminished the inflammatory response, reduced debridement and thus led to less
regeneration and repair. Additionally, the more important reason might be that the anti-inflammatory
macrophage decline, which caused by the depletion of anti-inflammatory macrophage and the initial
proinflammatory macrophage depletion, weakened the benefits of inhibiting fibrosis. Similarly, due to the
anti-inflammatory macrophage decline, increased fibrosis was not improved by IGF-1 injection (Fig. 6).
Although IGF-1 injection promoted partial recovery of anti-inflammatory macrophages (CD206) at the late
stage of repair, the improvement effect of IGF-1 on contused muscle regeneration and fibrosis might be
related to other macrophage subpopulations or factors, which is detailed in the following discussion.

IGF-1 injection could not facilitate the coordination among macrophages after macrophage depletion,
thereby not improving the regeneration and repair of contused muscles

Total macrophages (F4/80 mRNA) after macrophages depletion were significantly inhibited compared
with those after simple muscle contusion (Fig. 1a and Fig. 2). Nonetheless, through IGF-1 injection, the
cellular immune response after contusion was improved to a certain extent (5). However, compared with
that after simple muscle contusion, the levels of proinflammatory macrophages (CD68 mRNA) after
macrophage depletion or after IGF-1 injection in the late stage of repair were increased significantly
(Fig. 1b). This result indicated not only that macrophage depletion led to the increased muscle
inflammation and delayed repair of contused muscle but also that IGF-1 injection did not improve it.
Moreover, there was mostly the recovery of anti-inflammatory macrophages (CD163 and CD206 mRNA)
in the initial stage of repair (Fig. 1c, d) because IGF-1 could promote a shift in the macrophage phenotype
from M1 to M2 (12, 54).

However, in the late stage of repair (at 14 d postinjury), total macrophages (F4/80 mRNA) after IGF-1
injection were higher than those after both macrophage depletion and simple muscle contusion, but the
mRNA levels of CD68 and CD206 macrophages after IGF-1 injection were higher only than that after
simple muscle contusion, and the mRNA levels of CD163 macrophages were lower than that after simple
muscle contusion (Fig. 1a-d). These results suggest that the increase of these anti-inflammatory
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macrophages was not as significant as that of total macrophages during the recovery of macrophages.
Given this, we speculated that other macrophage subpopulations might be involved in functional recovery
in the interim and late stages of repair, not just these macrophages (CD163 and CD206). Therefore,
although IGF-1 injection could modulate the inflammatory response and change the muscle regeneration
and repair environments by increasing some types of macrophages (5, 38, 55, 56), IGF-1 injection
combined with macrophage depletion could not facilitate the coordination among macrophages and thus
did not improve muscle regeneration and repair.

IGF-1 injection partly improved the inhibition of angiogenesis regulatory factors induced by macrophage
depletion but could not improve the impaired regeneration and repair of contused muscles

HIF-1α can promote the regeneration and repair of injured tissue by activating VEGF and Angpt-1 (57–
60). VEGF and Angpt-1 play essential roles in angiogenesis, vascular regeneration and development and
contribute to vessel maturation and stability (60–63). In the current study, compared with that after
simple muscle contusion, the increased mRNA expression of HIF-1α and VEGF in the initial stage of repair
after macrophage depletion (Fig. 7a, b) might be because macrophage depletion mimicked hypoxia and
triggered an increase in HIF-1α, thereby upregulating VEGF (59, 64–67). However, VEGF mainly came
from white blood cells in plasma (34, 68, 69); thus macrophage depletion led to the sustained reduction
of VEGF. Therefore, due to the depletion of macrophages and the increase in HIF-1α, the mRNA
expression of VEGF in the late stage of repair after macrophage depletion was lower than that after
simple muscle contusion (Fig. 7b). Moreover, during all stages of repair after macrophage depletion, the
mRNA expression of Angpt-1 was lower than that after simple muscle contusion (Fig. 7c). It is possible
that repair impairment induced by macrophage depletion prolongs inflammation or aggravates fibrosis,
leading to decreased angiogenesis and even competitive inhibition of Angpt-1 by Angpt-2 (70).

Furthermore, compared with that after macrophage depletion, the mRNA expression of HIF-1α was
reduced significantly during all stages of repair after IGF-1 injection (Fig. 7a). This might be because IGF-
1 enhanced the stabilization and activity of HIF-1α by regulating the synthesis of HIF-1α protein (59, 71),
thus inhibiting the increase in HIF-1α caused by macrophage depletion. Additionally, the increased
expression of VEGF in the late stage and Angpt-1 during all stages of repair after IGF-1 injection (Fig. 7b,
c) suggests that IGF-1 injection might partly improve the inhibition of angiogenesis regulatory factors
induced by macrophage depletion. Moreover, the mRNA expression of HIF-1α, VEGF and Angpt-1 in the
late stage of repair was lower than that after simple muscle contusion (Fig. 7a-c), suggesting that even
IGF-1 injection following macrophage depletion ultimately could not promote angiogenesis and the
impaired repair of contused muscle to a similar degree as after simple muscle contusion.

Conclusions
In brief, if the macrophages had been depleted continuously, IGF-1 injection could have promoted partial
recovery of macrophage subpopulations (CD206) and expression of VEGF and Angpt-1; But IGF-1
injection could not completely remedy the important role of macrophages in muscle regeneration-related
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regulatory factors, myogenic regulatory factors, and angiogenesis regulatory factors; IGF-1 injection into
contusion skeletal muscle in the state of macrophage depletion could not improve the level of muscle
regeneration and fibrosis, which was related to the failure of IGF-1 injection to improve the coordination
of macrophage subsets and to promote angiogenesis to reach the level of simple muscle contusion
(Fig. 8). Consequently, exogenic supplementation with IGF-1 did not improve the impaired regeneration
and repair of contused muscle induced by macrophage depletion.
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Figure 1

Schematic representation of the experimental timeline. MD, macrophages depletion (clodronate
liposomes intraperitoneal injection). IGF-1, recombinant mouse IGF-I protein (intramuscular injection).
Con, mice in this group were sampled before contusion; 1d, mice in this group were sampled at 1d after
contusion; 3d, mice in this group were sampled at
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Figure 2

mRNA levels of the specific markers of macrophages at Con, 1 d, 3 d, 7 d, 14 d after muscle contusion in
Cp, CD and CDI groups. (a) The expression of F4/80; (b) The expression of CD68; (c) The expression of
CD163; (d) The expression of CD206. Cp, contusion and placebo treatment; CD, contusion and
macrophages depletion; CDI, contusion with macrophages depletion and IGF-1 injection. *ρ≤ 0.05; **ρ≤
0.01; ***ρ≤ 0.001 compared among Cp, CD, CDI groups. a ρ≤ 0.05; aa ρ≤ 0.01 compared to Con in Cp
group; b ρ≤ 0.05; bb ρ≤ 0.01; bbb ρ≤ 0.001 compared to Con in CD group; c ρ≤ 0.05; cc ρ≤ 0.01; ccc ρ≤
0.001 compared to Con in CDI group.
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Figure 3

Immunofluorescence intensity of F4/80 at 3 d and 14 d after muscle contusion in Cp, CD and CDI groups.
(a) Histological evaluation of F4/80 expression at 3 d after contusion in Cp, CD and CDI groups
(immunofluorescence staining). (b) Histological evaluation of F4/80 expression at 14 d after contusion in
Cp, CD and CDI groups (immunofluorescence staining). F4/80 expressions were marked with green. DAPI
marked with blue were defined as a cell nucleus. Bar=50µm. (c) Average fluorescence intensity of F4/80
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at 3 d and 14 d after contusion in Cp, CD and CDI groups. *ρ≤ 0.05; **ρ≤ 0.01; ***ρ≤ 0.001 vs. Cp group.
Cp, contusion and placebo treatment; CD, contusion and macrophages depletion; CDI, contusion with
macrophages depletion and IGF-1 injection.

Figure 4

Muscle regeneration at 14 d after muscle contusion in Cp, CD and CDI groups. (a) Histological evaluation
of gastrocnemius muscle regeneration at 14 d after contusion in Cp, CD and CDI groups (hematoxylin
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and eosin staining). The centrally-nucleated myofibers marked with green or ↑ were defined as
regenerative myofibers. Left bar=50µm, Right bar=20µm. (b) Number (the total number, fibers/hpf) of
regenerating myofibers at 14 d after contusion in Cp, CD and CDI groups. (c) Area (the sum of cross-
sectional area, µm2) of regenerating myofibers at 14 d after contusion in Cp, CD and CDI groups. (d)
Diameter (the sumof the minor axis diameters, µm) of regenerating myofibers at 14 d after contusion in
Cp, CD and CDI groups. *ρ≤ 0.05; **ρ≤ 0.01 vs. Cp group. Cp, contusion and placebo treatment; CD,
contusion and macrophages depletion; CDI, contusion with macrophages depletion and IGF-1 injection.
hpf: 200× high-powered fields.

Figure 5

mRNA levels of myogenic regulatory factors at Con, 1 d, 3 d, 7 d, 14 d after muscle contusion in Cp, CD
and CDI groups. (a) The expression of MyoD; (b) The expression of Myf5; (c) The expression of
myogenin; (d) The expression of Myf6. Cp, contusion and placebo treatment; CD, contusion and
macrophages depletion; CDI, contusion with macrophages depletion and IGF-1 injection. *ρ≤ 0.05; **ρ≤
0.01; ***ρ≤ 0.001 compared among Cp, CD, CDI groups. a ρ≤ 0.05; aa ρ≤ 0.01; aaa ρ≤ 0.001 compared
to Con in Cp group; b ρ≤ 0.05; bb ρ≤ 0.01; bbb ρ≤ 0.001 compared to Con in CD group; c ρ≤ 0.05; cc ρ≤
0.01; ccc ρ≤ 0.001 compared to Con in CDI group.
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Figure 6

Immunofluorescence intensity of MyoD and myogenin at 14 d after muscle contusion in Cp, CD and CDI
groups. (a) and (c) Histological evaluation of MyoD and myogenin expression at 14 d after contusion in
Cp, CD and CDI groups (immunofluorescence staining). MyoD and myogenin expressions were marked
with red. DAPI marked with blue were defined as a cell nucleus. Bar=50µm. (b) and (d) Average
fluorescence intensity of MyoD and myogenin at 14 d after contusion in Cp, CD and CDI groups. *ρ≤
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0.05; **ρ≤ 0.01 vs. Cp group. Cp, contusion and placebo treatment; CD, contusion and macrophages
depletion; CDI, contusion with macrophages depletion and IGF-1 injection.

Figure 7

Muscle fibrosis at 14 d after muscle contusion in Cp, CD and CDI groups. (a) Histological evaluation of
fibrotic tissue at 14 d after contusion in Cp, CD and CDI groups (Masson trichrome stain, collagen: blue;
myofibers: red; nuclei: black). Bar=200µm. (b) The total area of fibrotic tissue at the site of injury at 14 d
after contusion in Cp, CD and CDI groups. *ρ≤ 0.05; **ρ≤ 0.01 vs. Cp group. Cp, contusion and placebo
treatment; CD, contusion and macrophages depletion; CDI, contusion with macrophages depletion and
IGF-1 injection.
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Figure 8

mRNA levels of angiogenesis regulatory factors at Con, 1 d, 3 d, 7 d, 14 d after muscle contusion in Cp,
CD and CDI groups. (a) The expression of HIF-1α; (b) The expression of VEGF; (c) The expression of
Angpt-1. Cp, contusion and placebo treatment; CD, contusion and macrophages depletion; CDI, contusion
with macrophages depletion and IGF-1 injection. *ρ≤ 0.05; **ρ≤ 0.01; ***ρ≤ 0.001 compared among Cp,
CD, CDI groups. a ρ≤ 0.05; aa ρ≤ 0.01; aaa ρ≤ 0.001 compared to Con in Cp group; b ρ≤ 0.05; bb ρ≤
0.01; bbb ρ≤ 0.001 compared to Con in CD group; c ρ≤ 0.05; cc ρ≤ 0.01; ccc ρ≤ 0.001 compared to Con
in CDI group.
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Figure 9

Schematic diagram of the effects of IGF-1 injection on the proliferation, differentiation and fusion of
muscle satellite cells, muscle fibrosis, and angiogenesis, which affect the impaired regeneration of
contused skeletal muscle caused by macrophage depletion. ECM: extracellular matrix; M1: pro-
inflammatory type 1 macrophages; M2: anti-inflammatory type 2 macrophages; SC: satellite cell; SMC:
skeletal muscle cell; : macrophage depletion; Dark blue arrows refer to the repair process of injured
skeletal muscle; Green arrows refer to the promotion or enhancement; Red arrows refer to the inhibition or
weakening; Light blue dotted arrows refer to weak or no effect.


