[1] R.L. Siegel, K.D. Miller, and A. Jemal, Cancer statistics, 2019. CA Cancer J Clin 69 (2019) 7-34.
[2] A. Mohammed, N.B. Janakiram, V. Madka, M. Li, A.S. Asch, and C.V. Rao, Current Challenges and Opportunities for Chemoprevention of Pancreatic Cancer. Curr Med Chem 25 (2018) 2535-2544.
[3] L.C. Chu, M.G. Goggins, and E.K. Fishman, Diagnosis and Detection of Pancreatic Cancer. Cancer J 23 (2017) 333-342.
[4] M. Ilic, and I. Ilic, Epidemiology of pancreatic cancer. World J Gastroenterol 22 (2016) 9694-9705.
[5] B.L. Appel, P. Tolat, D.B. Evans, and S. Tsai, Current staging systems for pancreatic cancer. Cancer J 18 (2012) 539-49.
[6] N.A. Juiz, J. Iovanna, and N. Dusetti, Pancreatic Cancer Heterogeneity Can Be Explained Beyond the Genome. Front Oncol 9 (2019) 246.
[7] M.A. Tempero, E. Uchida, H. Takasaki, D.A. Burnett, Z. Steplewski, and P.M. Pour, Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res 47 (1987) 5501-3.
[8] M.S. Kim, S.V. Kuppireddy, S. Sakamuri, M. Singal, D. Getnet, H.C. Harsha, R. Goel, L. Balakrishnan, H.K. Jacob, M.K. Kashyap, S.G. Tankala, A. Maitra, C.A. Iacobuzio-Donahue, E. Jaffee, M.G. Goggins, V.E. Velculescu, R.H. Hruban, and A. Pandey, Rapid characterization of candidate biomarkers for pancreatic cancer using cell microarrays (CMAs). J Proteome Res 11 (2012) 5556-63.
[9] M. Oshima, K. Okano, S. Muraki, R. Haba, T. Maeba, Y. Suzuki, and S. Yachida, Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Ann Surg 258 (2013) 336-46.
[10] B. Baradaran, R. Shahbazi, and M. Khordadmehr, Dysregulation of key microRNAs in pancreatic cancer development. Biomed Pharmacother 109 (2019) 1008-1015.
[11] A.A. Tesfaye, A.S. Azmi, and P.A. Philip, miRNA and Gene Expression in Pancreatic Ductal Adenocarcinoma. Am J Pathol 189 (2019) 58-70.
[12] N. Rappoport, and R. Shamir, Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res 46 (2018) 10546-10562.
[13] Z. Yang, B. Liu, T. Lin, Y. Zhang, L. Zhang, and M. Wang, Multiomics analysis on DNA methylation and the expression of both messenger RNA and microRNA in lung adenocarcinoma. J Cell Physiol 234 (2019) 7579-7586.
[14] M. Zheng, Y. Hu, R. Gou, J. Wang, X. Nie, X. Li, Q. Liu, J. Liu, and B. Lin, Integrated multi-omics analysis of genomics, epigenomics, and transcriptomics in ovarian carcinoma. Aging (Albany NY) 11 (2019) 4198-4215.
[15] J.C. Guo, Y. Wu, Y. Chen, F. Pan, Z.Y. Wu, J.S. Zhang, J.Y. Wu, X.E. Xu, J.M. Zhao, E.M. Li, Y. Zhao, and L.Y. Xu, Protein-coding genes combined with long noncoding RNA as a novel transcriptome molecular staging model to predict the survival of patients with esophageal squamous cell carcinoma. Cancer Commun (Lond) 38 (2018) 4.
[16] C.H. Mermel, S.E. Schumacher, B. Hill, M.L. Meyerson, R. Beroukhim, and G. Getz, GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12 (2011) R41.
[17] J.M. Taylor, Random Survival Forests. J Thorac Oncol 6 (2011) 1974-5.
[18] J. Meng, P. Li, Q. Zhang, Z. Yang, and S. Fu, A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res 33 (2014) 84.
[19] G. Yu, Wang, L. G., Han, Y., He, Q. Y., clusterProfiler: an R package for comparing biological themes among gene clusters. Omics : a journal of integrative biology 16 (2012) 284–287.
[20] S.L. Kukreja, Löfberg, J., & Brenner, M. J. , A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification. IFAC proceedings volumes 39 (2006) 814-819.
[21] D.T. Chen, A.H. Davis-Yadley, P.Y. Huang, K. Husain, B.A. Centeno, J. Permuth-Wey, J.M. Pimiento, and M. Malafa, Prognostic Fifteen-Gene Signature for Early Stage Pancreatic Ductal Adenocarcinoma. PLoS One 10 (2015) e0133562.
[22] Y. Cheng, K. Wang, L. Geng, J. Sun, W. Xu, D. Liu, S. Gong, and Y. Zhu, Identification of candidate diagnostic and prognostic biomarkers for pancreatic carcinoma. EBioMedicine 40 (2019) 382-393.
[23] P. Raman, R. Maddipati, K.H. Lim, and A. Tozeren, Pancreatic cancer survival analysis defines a signature that predicts outcome. PLoS One 13 (2018) e0201751.
[24] M. Wu, X. Li, T. Zhang, Z. Liu, and Y. Zhao, Identification of a Nine-Gene Signature and Establishment of a Prognostic Nomogram Predicting Overall Survival of Pancreatic Cancer. Front Oncol 9 (2019) 996.
[25] I. Dagogo-Jack, and A.T. Shaw, Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15 (2018) 81-94.
[26] I.P. Ribeiro, J.B. Melo, and I.M. Carreira, Cytogenetics and Cytogenomics Evaluation in Cancer. Int J Mol Sci 20 (2019).
[27] N. Cancer Genome Atlas, Comprehensive molecular portraits of human breast tumours. Nature 490 (2012) 61-70.
[28] C. Kandoth, M.D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J.F. McMichael, M.A. Wyczalkowski, M.D.M. Leiserson, C.A. Miller, J.S. Welch, M.J. Walter, M.C. Wendl, T.J. Ley, R.K. Wilson, B.J. Raphael, and L. Ding, Mutational landscape and significance across 12 major cancer types. Nature 502 (2013) 333-339.
[29] K.O. Wrzeszczynski, V. Varadan, J. Byrnes, E. Lum, S. Kamalakaran, D.A. Levine, N. Dimitrova, M.Q. Zhang, and R. Lucito, Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. PLoS One 6 (2011) e28503.
[30] G. Jeong, H. Bae, D. Jeong, J. Ham, S. Park, H.W. Kim, H.S. Kang, and S.J. Kim, A Kelch domain-containing KLHDC7B and a long non-coding RNA ST8SIA6-AS1 act oppositely on breast cancer cell proliferation via the interferon signaling pathway. Sci Rep 8 (2018) 12922.
[31] A. Martin-Pardillos, and S.R.Y. Cajal, Characterization of Kelch domain-containing protein 7B in breast tumours and breast cancer cell lines. Oncol Lett 18 (2019) 2853-2860.
[32] G. Zhang, E. Fan, G. Yue, Q. Zhong, Y. Shuai, M. Wu, G. Feng, Q. Chen, and X. Gou, Five genes as a novel signature for predicting the prognosis of patients with laryngeal cancer. J Cell Biochem (2019).
[33] M.E. Ray, G. Wistow, Y.A. Su, P.S. Meltzer, and J.M. Trent, AIM1, a novel non-lens member of the betagamma-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma. Proc Natl Acad Sci U S A 94 (1997) 3229-34.
[34] S. Hoshimoto, C.T. Kuo, K.K. Chong, T.L. Takeshima, Y. Takei, M.W. Li, S.K. Huang, M.S. Sim, D.L. Morton, and D.S. Hoon, AIM1 and LINE-1 epigenetic aberrations in tumor and serum relate to melanoma progression and disease outcome. J Invest Dermatol 132 (2012) 1689-97.
[35] P. Vainio, J.P. Mpindi, P. Kohonen, V. Fey, T. Mirtti, K.A. Alanen, M. Perala, O. Kallioniemi, and K. Iljin, High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer. PLoS One 7 (2012) e39801.
[36] E. Rosenbaum, S. Begum, M. Brait, M. Zahurak, L. Maldonado, L.A. Mangold, M.A. Eisenberger, J.I. Epstein, A.W. Partin, D. Sidransky, and M.O. Hoque, AIM1 promoter hypermethylation as a predictor of decreased risk of recurrence following radical prostatectomy. Prostate 72 (2012) 1133-9.
[37] Z. Yang, A. Liu, Q. Xiong, Y. Xue, F. Liu, S. Zeng, Z. Zhang, Y. Li, Y. Sun, and C. Xu, Prognostic value of differentially methylated gene profiles in bladder cancer. J Cell Physiol 234 (2019) 18763-18772.
[38] Y. Li, S. Ji, L. Fu, T. Jiang, D. Wu, and F. Meng, Over-expression of ARHGAP18 suppressed cell proliferation, migration, invasion, and tumor growth in gastric cancer by restraining over-activation of MAPK signaling pathways. Onco Targets Ther 11 (2018) 279-290.
[39] M.A. Aleskandarany, S. Sonbul, R. Surridge, A. Mukherjee, C. Caldas, M. Diez-Rodriguez, I. Ashankyty, K.I. Albrahim, A.M. Elmouna, R. Aneja, S.G. Martin, I.O. Ellis, A.R. Green, and E.A. Rakha, Rho-GTPase activating-protein 18: a biomarker associated with good prognosis in invasive breast cancer. Br J Cancer 117 (2017) 1176-1184.
[40] M.-N.G. Aguilar-Rojas A, Huerta-Reyes M, Pérez-Solis MA, Silva-García R, Guillén N, Olivo-Marin JC, Activation of human gonadotropin-releasing hormone receptor promotes down regulation of ARHGAP18 and regulates the cell invasion of MDA-MB-231 cells. Molecular and cellular endocrinology 460 (2018) 94-103.
[41] B. Humphries, Z. Wang, Y. Li, J.R. Jhan, Y. Jiang, and C. Yang, ARHGAP18 Downregulation by miR-200b Suppresses Metastasis of Triple-Negative Breast Cancer by Enhancing Activation of RhoA. Cancer Res 77 (2017) 4051-4064.
[42] Y. Pan, Y. Song, L. Cheng, H. Xu, and J. Liu, Analysis of methylation-driven genes for predicting the prognosis of patients with head and neck squamous cell carcinoma. J Cell Biochem 120 (2019) 19482-19495.
[43] W. Deng, Y. Wang, S. Zhao, Y. Zhang, Y. Chen, X. Zhao, L. Liu, S. Sun, L. Zhang, B. Ye, and J. Du, MICAL1 facilitates breast cancer cell proliferation via ROS-sensitive ERK/cyclin D pathway. J Cell Mol Med 22 (2018) 3108-3118.
[44] W. Deng, Y. Wang, L. Gu, B. Duan, J. Cui, Y. Zhang, Y. Chen, S. Sun, J. Dong, and J. Du, MICAL1 controls cell invasive phenotype via regulating oxidative stress in breast cancer cells. BMC Cancer 16 (2016) 489.
[45] R. Loria, G. Bon, V. Perotti, E. Gallo, I. Bersani, P. Baldassari, M. Porru, C. Leonetti, S. Di Carlo, P. Visca, M.F. Brizzi, A. Anichini, R. Mortarini, and R. Falcioni, Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells. Oncotarget 6 (2015) 2779-93.
[46] S.S. Mello, L.J. Valente, N. Raj, J.A. Seoane, B.M. Flowers, J. McClendon, K.T. Bieging-Rolett, J. Lee, D. Ivanochko, M.M. Kozak, D.T. Chang, T.A. Longacre, A.C. Koong, C.H. Arrowsmith, S.K. Kim, H. Vogel, L.D. Wood, R.H. Hruban, C. Curtis, and L.D. Attardi, A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell 32 (2017) 460-473 e6.
[47] R. Matera, and M.W. Saif, New therapeutic directions for advanced pancreatic cancer: cell cycle inhibitors, stromal modifiers and conjugated therapies. Expert Opin Emerg Drugs 22 (2017) 223-233.