It is well known that construction of dams or reservoirs have geomorphological impacts on the environment and could potentially accelerate the occurrence of landslides. One of the most common impact is the occurrence of new landslides and activation of the old one, which may turn into a natural disaster. Thus, controlling the stability of landslides become challenging issue specifically in the presence of f pore-water pressure. In general, the presence of water or pore-water pressure reduces the soil resistance and also leads to increase in stimulus loads, resulting in reduction of stability coefficients. In the present study, using GeoStudio SLOPE/W software, the effect of the proximity of the dam reservoir in terms of different operating conditions on the stability analysis of the landslide area of Zarm-Rood Dam is investigated. In the first step, the evaluation of internal stability of landslides and the effect of the presence of water on stability coefficients were evaluated and then the sustainable design of landslides was proposed. It was found that when extra pore-water pressure ranges from 0.2 to 0.4, safety factor is decreased by about 10%. Accordingly, safety factor is decreased by about 17% when extra pore-water pressure range from 0.4 to 0.6. This research demonstrates successful implementation of GeoStudio SLOPE/W for slope stability analysis in dam construction projects.