[1]G. W. Reed, J. E. Rossi, C. P. Cannon, Acute myocardial infarction, Lancet. 389 (2017) 197–210. doi:10.1016/S0140–6736(16)30677–8.
[2]J. González-Montero, R. Brito, A. I. Gajardo, R. Rodrigo, Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities, World J. Cardiol. 10 (2018) 74–86. doi:10.4330/wjc.v10.i9.74.
[3]M. Neri, I. Riezzo, N. Pascale, C. Pomara, E. Turillazzi, Ischemia/reperfusion injury following acute myocardial infarction: A critical issue for clinicians and forensic pathologists, Mediators Inflamm. 2017 (2017) 1–14. doi:10.1155/2017/7018393.
[4]N.-B. Liu, M. Wu, C. Chen, M. Fujino, J.-S. Huang, P. Zhu, X.-K. Li, Novel molecular targets participating in myocardial ischemia-reperfusion injury and cardioprotection, Cardiol. Res. Pract. 2019 (2019) 1–16. doi:10.1155/2019/6935147.
[5]A. Binek, R. Fernández-Jiménez, I. Jorge, E. Camafeita, J. A. López, N. Bagwan, C. Galán-Arriola, A. Pun, J. Agüero, V. Fuster, B. Ibanez, J. Vázquez, Proteomic footprint of myocardial ischemia/reperfusion injury: Longitudinal study of the at-risk and remote regions in the pig model, Sci. Rep. 7 (2017) 12343. doi:10.1038/s41598–017–11985–5.
[6]V. K. Shah, K. K. Shalia, Reperfusing the myocardium - a damocles Sword., Indian Heart J. 70 (2018) 433–438. doi:10.1016/j.ihj.2017.11.009.
[7]A. J. Lautz, B. Zingarelli, Age-dependent myocardial dysfunction in critically ill patients: Role of mitochondrial dysfunction, Int. J. Mol. Sci. 20 (2019) 3523. doi:10.3390/ijms20143523.
[8]H. Zhou, P. Zhu, J. Wang, H. Zhu, J. Ren, Y. Chen, Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy., Cell Death Differ. 25 (2018) 1080–1093. doi:10.1038/s41418–018–0086–7.
[9]Q. Chen, J. Thompson, Y. Hu, J. Dean, E. J. Lesnefsky, Inhibition of the ubiquitous calpains protects complex I activity and enables improved mitophagy in hearts following ischemia-reperfusion, Am. J. Physiol. Physiol. (2019) ajpcell.00190.2019. doi:10.1152/ajpcell.00190.2019.
[10]S.-B. Ong, A. B. Gustafsson, New roles for mitochondria in cell death in the reperfused myocardium., Cardiovasc. Res. 94 (2012) 190–6. doi:10.1093/cvr/cvr312.
[11]S.-B. Ong, S. B. Kalkhoran, H. A. Cabrera-Fuentes, D. J. Hausenloy, Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease., Eur. J. Pharmacol. 763 (2015) 104–14. doi:10.1016/j.ejphar.2015.04.056.
[12]I. Scott, R. J. Youle, Mitochondrial fission and fusion., Essays Biochem. 47 (2010) 85–98. doi:10.1042/bse0470085.
[13]S.-B. Ong, S. Subrayan, S. Y. Lim, D. M. Yellon, S. M. Davidson, D. J. Hausenloy, Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury, Circulation. 121 (2010) 2012–2022. doi:10.1161/CIRCULATIONAHA.109.906610.
[14]A. Masuzawa, K. M. Black, C. A. Pacak, M. Ericsson, R. J. Barnett, C. Drumm, P. Seth, D. B. Bloch, S. Levitsky, D. B. Cowan, J. D. McCully, Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury, Am. J. Physiol. Circ. Physiol. 304 (2013) H966–H982. doi:10.1152/ajpheart.00883.2012.
[15]M.-H. Disatnik, J. C. B. Ferreira, J. C. Campos, K. S. Gomes, P.M. M. Dourado, X. Qi, D. Mochly-Rosen, Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction., J. Am. Heart Assoc. 2 (2013) e000461. doi:10.1161/JAHA.113.000461.
[16]E. Smirnova, L. Griparic, D.-L. Shurland, A.M. van der Bliek, Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells, Mol. Biol. Cell. 12 (2001) 2245–2256. doi:10.1091/mbc.12.8.2245.
[17]C.-R. Chang, C. Blackstone, Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology., J. Biol. Chem. 282 (2007) 21583–7. doi:10.1074/jbc.C700083200.
[18]H.-Y. Lin, R.-H. Lai, S.-T. Lin, R.-C. Lin, M.-J. Wang, C.-C. Lin, H.-C. Lee, F.-F. Wang, J.-Y. Chen, Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation., Cell Death Differ. 20 (2013) 139–53. doi:10.1038/cdd.2012.106.
[19]S. Y. Kim, C. R. Morales, T. G. Gillette, J. A. Hill, Epigenetic regulation in heart failure., Curr. Opin. Cardiol. 31 (2016) 255–65. doi:10.1097/HCO.0000000000000276.
[20]S. Andalib, A. A. Divani, T. M. Michel, P. F. Høilund-Carlsen, M. S. Vafaee, A. Gjedde, Pandora’s Box: mitochondrial defects in ischaemic heart disease and stroke, Expert Rev. Mol. Med. 19 (2017) e5. doi:10.1017/erm.2017.5.
[21]J. Mukohyama, Y. Shimono, H. Minami, Y. Kakeji, A. Suzuki, Roles of microRNAs and RNA-binding proteins in the regulation of colorectal cancer stem cells, Cancers (Basel). 9 (2017) 143. doi:10.3390/cancers9100143.
[22]A.-J. Chen, J.-H. Paik, H. Zhang, S. A. Shukla, R. Mortensen, J. Hu, H. Ying, B. Hu, J. Hurt, N. Farny, C. Dong, Y. Xiao, Y. A. Wang, P. A. Silver, L. Chin, S. Vasudevan, R. A. Depinho, STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA., Genes Dev. 26 (2012) 1459–72. doi:10.1101/gad.189001.112.
[23]T. A. Ebersole, Q. Chen, M. J. Justice, K. Artzt, The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins., Nat. Genet. 12 (1996) 260–5. doi:10.1038/ng0396–260.
[24]A. B. Herman, M. V Autieri, Inflammation-regulated mRNA stability and the progression of vascular inflammatory diseases., Clin. Sci. (Lond). 131 (2017) 2687–2699. doi:10.1042/CS20171373.
[25]Y. Wang, G. Vogel, Z. Yu, S. Richard, The QKI–5 and QKI–6 RNA binding proteins regulate the expression of microRNA 7 in glial cells, Mol. Cell. Biol. 33 (2013) 1233. doi:10.1128/MCB.01604–12.
[26]S. Katta, S. Karnewar, D. Panuganti, M. K. Jerald, B. K. S. Sastry, S. Kotamraju, Mitochondria-targeted esculetin inhibits PAI–1 levels by modulating STAT3 activation and miR–19b via SIRT3: Role in acute coronary artery syndrome, J. Cell. Physiol. 233 (2018) 214–225. doi:10.1002/jcp.25865.
[27]J. Xu, Y. Tang, Y. Bei, S. Ding, L. Che, J. Yao, H. Wang, D. Lv, J. Xiao, miR–19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN., Oncotarget. 7 (2016) 10870–8. doi:10.18632/oncotarget.7678.
[28]D. Garcia-Dorado, A. Rodríguez-Sinovas, M. Ruiz-Meana, J. Inserte, Protection against myocardial ischemia-reperfusion injury in clinical practice, Rev. Española Cardiol. (English Ed. 67 (2014) 394–404. doi:10.1016/j.rec.2014.01.010.
[29]T. Wai, J. García-Prieto, M. J. Baker, C. Merkwirth, P. Benit, P. Rustin, F. J. Rupérez, C. Barbas, B. Ibañez, T. Langer, Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice., Science. 350 (2015) aad0116. doi:10.1126/science.aad0116.
[30]J. D. McCully, D. B. Cowan, C. A. Pacak, I. K. Toumpoulis, H. Dayalan, S. Levitsky, Injection of isolated mitochondria during early reperfusion for cardioprotection, Am. J. Physiol. Circ. Physiol. 296 (2009) H94–H105. doi:10.1152/ajpheart.00567.2008.
[31]D. B. Cowan, R. Yao, V. Akurathi, E. R. Snay, J. K. Thedsanamoorthy, D. Zurakowski, M. Ericsson, I. Friehs, Y. Wu, S. Levitsky, P. J. del Nido, A. B. Packard, J. D. McCully, Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection, PLoS One. 11 (2016) e0160889. doi:10.1371/journal.pone.0160889.
[32]E. Smirnova, D.-L. Shurland, S. N. Ryazantsev, A.M. van der Bliek, A human dynamin-related protein controls the distribution of mitochondria, J. Cell Biol. 143 (1998) 351–358. doi:10.1083/jcb.143.2.351.
[33]S. C. Kamerkar, F. Kraus, A. J. Sharpe, T. J. Pucadyil, M. T. Ryan, Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission., Nat. Commun. 9 (2018) 5239. doi:10.1038/s41467–018–07543-w.
[34]A. Nishimura, T. Shimauchi, T. Tanaka, K. Shimoda, T. Toyama, N. Kitajima, T. Ishikawa, N. Shindo, T. Numaga-Tomita, S. Yasuda, Y. Sato, K. Kuwahara, Y. Kumagai, T. Akaike, T. Ide, A. Ojida, Y. Mori, M. Nishida, Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence., Sci. Signal. 11 (2018) eaat5185. doi:10.1126/scisignal.aat5185.
[35]R.-H. Lai, Y.-W. Hsiao, M.-J. Wang, H.-Y. Lin, C.-W. Wu, C.-W. Chi, A. F.-Y. Li, Y.-S. Jou, J.-Y. Chen, SOCS6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation., Cancer Lett. 288 (2010) 75–85. doi:10.1016/j.canlet.2009.06.025.
[36]Z. Sun, Q. Liu, H. Hong, H. Zhang, T. Zhang, miR–19 promotes osteosarcoma progression by targeting SOCS6, Biochem. Biophys. Res. Commun. 495 (2018) 1363–1369. doi:10.1016/j.bbrc.2017.10.002.
[37]Y. Fu, Y. Xu, S. Chen, Y. Ouyang, G. Sun, MiR‑151a–3p promotes postmenopausal osteoporosis by targeting SOCS5 and activating JAK2/STAT3 signaling, Rejuvenation Res. (2019) rej.2019.2239. doi:10.1089/rej.2019.2239.
[38]Y.-T. Zeng, X.-F. Liu, W.-T. Yang, P.-S. Zheng, REX1 promotes EMT-induced cell metastasis by activating the JAK2/STAT3-signaling pathway by targeting SOCS1 in cervical cancer, Oncogene. (2019). doi:10.1038/s41388–019–0906–3.
[39]S. Ebong, C.-R. Yu, D. A. Carper, A. B. Chepelinsky, C. E. Egwuagu, Activation of STAT signaling pathways and induction of suppressors of cytokine signaling (SOCS) proteins in mammalian lens by growth factors, Investig. Opthalmology Vis. Sci. 45 (2004) 872. doi:10.1167/iovs.03–0311.
[40]H. Xiong, W. Du, Y.-J. Zhang, J. Hong, W.-Y. Su, J.-T. Tang, Y.-C. Wang, R. Lu, J.-Y. Fang, Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells, Mol. Carcinog. 51 (2012) 174–184. doi:10.1002/mc.20777.
[41]Y. Yang, W. Duan, Z. Jin, W. Yi, J. Yan, S. Zhang, N. Wang, Z. Liang, Y. Li, W. Chen, D. Yi, S. Yu, JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury, J. Pineal Res. 55 (2013) 275–286. doi:10.1111/jpi.12070.
[42]W. Liu, L. Han, R. Xiang, Protection of miR‐19b in hypoxia/reoxygenation‐induced injury by targeting PTEN, J. Cell. Physiol. 234 (2019) 16226–16237. doi:10.1002/jcp.28286.
[43]J. L. Thorne, S. Battaglia, D. E. Baxter, J. L. Hayes, S. A. Hutchinson, S. Jana, R. A. Millican-Slater, L. Smith, M. C. Teske, L. M. Wastall, T. A. Hughes, MiR–19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer, Biochim. Biophys. Acta - Gene Regul. Mech. 1861 (2018) 996–1006. doi:10.1016/j.bbagrm.2018.08.005.
[44]W. Guo, T. Jiang, C. Lian, H. Wang, Q. Zheng, H. Ma, QKI deficiency promotes FoxO1 mediated nitrosative stress and endoplasmic reticulum stress contributing to increased vulnerability to ischemic injury in diabetic heart, J. Mol. Cell. Cardiol. 75 (2014) 131–140. doi:10.1016/j.yjmcc.2014.07.010.
[45]F. Wang, Y. Yuan, P. Yang, X. Li, Extracellular vesicles-mediated transfer of miR–208a/b exaggerate hypoxia/reoxygenation injury in cardiomyocytes by reducing QKI expression, Mol. Cell. Biochem. 431 (2017) 187–195. doi:10.1007/s11010–017–2990–4.