[1] López-Gándara C, Ramos FM, Cirera A. YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J Sens 2009, 2009.
[2] Badwal SPS, Foger K. Solid oxide fuel cell electrolyte review. Ceram Int 1996, 22: 257-265.
[3] Shuk P. Process Zirconia Oxygen Analyzer—State of Art Zirkondioxid-Sauerstoffsensoren—Stand der Technik. TM Tech Mess 2010, 77(1): 19-23.
[4] Zhuiykov S. Electrochemistry of zirconia gas sensors. Boca Raton (USA): CRC Press, 2007
[5] Milshtein J, Gratz E, Pati S, et al. Yttria stabilized zirconia membrane stability in molten fluoride fluxes for low-carbon magnesium production by the SOM process J Min Metall Sect 2013, 49(2): 183-190.
[6] Hwang KJ, Shin M, Lee MH, et al. Investigation on the phase stability of yttria-stabilized zirconia electrolytes for high-temperature electrochemical application. Ceram Int 2019, 45(7): 9462-9467.
[7] Liu T, Zhang X, Wang X, Yu J, et al. A review of zirconia-based solid electrolytes. Ionics 2016, 22(12): 2249-2262.
[8] Wu CJ, Hamada MS. Experiments: planning, analysis, and optimization. New York (USA): John Wiley & Sons, 2011.
[9] Buzzi-Ferraris, G. (1999). Planning of experiments and kinetic analysis. Catalysis today, 52(2-3), 125-132.
[10] Moghadam FK, Stevenson DA. Influence of Annealing on the Electrical Conductivity of Polycrystalline ZrO2+ 8 Wt% Y2O3. J Am Ceram Soc 1982, 65(4): 213-216.
[11] Kondoh J, Kawashima T, Kikuchi S, et al. Effect of Aging on Yttria‐Stabilized Zirconia: I. A Study of Its Electrochemical Properties. J Electrochem Soc 1998, 145(5): 1527.
[12] Backhaus-Ricoult M, Badding M, Thibault Y. Grain boundary segregation and conductivity in yttria-stabilized zirconia. In Advances in Electronic and Electrochemical Ceramics: Proceedings of the 107th Annual Meeting of The American Ceramic Society. Dongan F, Kumta PN, Eds. Baltimore: John Wiley & Sons, 2012: 173.
[13] Navrotsky A. Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure. J Mater Chem 2010, 20(47): 10577-10587.
[14] International standards organization. Fine ceramics (advanced ceramics, advanced technical ceramics) - microstructural characterization - Part 1: determination of grain size and size distribution, ISO 13383-1. International Standards Organization (ISO), Geneva (Swiss), 2012.
[15] Kondoh J. Origin of the hump on the left shoulder of the X-ray diffraction peaks observed in Y2O3-fully and partially stabilized ZrO2. J Alloys Compd 2004, 375(1-2): 270-282.
[16] Kondoh J, Kikuchi S, Tomii Y, et al. Effect of Aging on Yttria‐Stabilized Zirconia: II. A Study of the Effect of the Microstructure on Conductivity. J Electrochem Soc 1998, 145(5): 1536.
[17] Dura OJ, Boada R, de la Torre ML, et al. XANES and EXAFS study of the local order in nanocrystalline yttria-stabilized zirconia. Phys Rev B 2013, 87(17): 174109.
[18] Khare J, Rajput P, Joshi MP, et al. X-ray absorption spectroscopy based investigation of local structure in yttria stabilized zirconia nanoparticles generated by laser evaporation method: Effect of pulsed vs CW mode of laser operation. Ceram Int 2015, 41(4): 5909-5915.
[19] Kondoh J, Kikuchi S, Tomii Y, et al. Effect of Aging on Yttria‐Stabilized Zirconia: III. A Study of the Effect of Local Structures on Conductivity. J Electrochem Soc 1998, 145(5): 1550.
[20] Ren X, Pan W. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater 2014, 69: 397-406.
[21] Appel CC, Bonanos N, Horsewell A, et al. Ageing behaviour of zirconia stabilised by yttria and manganese oxide. J Mater Sci 2001, 36(18): 4493-4501.
[22] Kondoh J, Kikuchi S, Tomii Y, et al. Aging and composition dependence of electron diffraction patterns in Y2O3-stabilized ZrO2: Relationship between crystal structure and conductivity. Physica B 1999, 262(1-2): 177-189.