1 Bellani, G. et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. Jama 315, 788-800, doi:10.1001/jama.2016.0291 (2016).
2 Huppert, L. A., Matthay, M. A. & Ware, L. B. Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in respiratory and critical care medicine 40, 31-39, doi:10.1055/s-0039-1683996 (2019).
3 Matthay, M. A. et al. Acute respiratory distress syndrome. Nature reviews. Disease primers 5, 18, doi:10.1038/s41572-019-0069-0 (2019).
4 Curley, G. F., Laffey, J. G., Zhang, H. & Slutsky, A. S. Biotrauma and Ventilator-Induced Lung Injury: Clinical Implications. Chest 150, 1109-1117, doi:10.1016/j.chest.2016.07.019 (2016).
5 Fan, E., Brodie, D. & Slutsky, A. S. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. Jama 319, 698-710, doi:10.1001/jama.2017.21907 (2018).
6 Lee, J. W., Fang, X., Gupta, N., Serikov, V. & Matthay, M. A. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America 106, 16357-16362, doi:10.1073/pnas.0907996106 (2009).
7 Togel, F. et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. American journal of physiology. Renal physiology 289, F31-42, doi:10.1152/ajprenal.00007.2005 (2005).
8 Lee, J. H., Park, J. & Lee, J. W. Therapeutic use of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. Transfusion 59, 876-883 (2019).
9 Gunawardena, T. N. A., Rahman, M. T., Abdullah, B. J. J. & Abu Kasim, N. H. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. Journal of tissue engineering and regenerative medicine 13, 569-586, doi:10.1002/term.2806 (2019).
10 van Balkom, B. W. M., Gremmels, H., Giebel, B. & Lim, S. K. Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Proteomics 19, e1800163, doi:10.1002/pmic.201800163 (2019).
11 Phinney, D. G. et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature communications 6, 8472, doi:10.1038/ncomms9472 (2015).
12 Najar, M. et al. Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy 18, 160-171, doi:10.1016/j.jcyt.2015.10.011 (2016).
13 Wakayama, H. et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 17, 1119-1129, doi:10.1016/j.jcyt.2015.04.009 (2015).
14 Monsel, A., Zhu, Y. G., Gudapati, V., Lim, H. & Lee, J. W. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 16, 859-871, doi:10.1517/14712598.2016.1170804 (2016).
15 Wuchter, P. et al. Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17, 128-139, doi:10.1016/j.jcyt.2014.04.002 (2015).
16 Mardpour, S. et al. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J Cell Physiol 234, 8249-8258, doi:10.1002/jcp.27669 (2019).
17 Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317, doi:10.1080/14653240600855905 (2006).
18 Galipeau, J. et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18, 151-159, doi:10.1016/j.jcyt.2015.11.008 (2016).
19 Varkouhi, A. K. et al. Extracellular Vesicles from Interferon-gamma-primed Human Umbilical Cord Mesenchymal Stromal Cells Reduce Escherichia coli-induced Acute Lung Injury in Rats. Anesthesiology 130, 778-790 (2019).
20 Monsel, A. et al. Therapeutic Effects of Human Mesenchymal Stem Cell-derived Microvesicles in Severe Pneumonia in Mice. Am J Respir Crit Care Med 192, 324-336, doi:10.1164/rccm.201410-1765OC (2015).
21 Chen, W. et al. Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate acute lung injury partly mediated by hepatocyte growth factor. International Journal of Biochemistry and Cell Biology 112, 114-122, doi:10.1016/j.biocel.2019.05.010 (2019).
22 Huang, R. et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 11, 7996-8014, doi:10.18632/aging.102314 (2019).
23 Devaney, J. et al. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 70, 625-635, doi:10.1136/thoraxjnl-2015-206813 (2015).
24 Silva, J. D. et al. Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. 2019, 8262849, doi:10.1155/2019/8262849 (2019).
25 Ionescu, L. et al. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol 303, L967-977, doi:10.1152/ajplung.00144.2011 (2012).
26 Li, Q. C., Liang, Y. & Su, Z. B. Prophylactic treatment with MSC-derived exosomes attenuates traumatic acute lung injury in rats. American journal of physiology. Lung cellular and molecular physiology 316, L1107-L1117, doi:10.1152/ajplung.00391.2018 (2019).
27 Liu, J., Chen, T., Lei, P., Tang, X. & Huang, P. Exosomes released by bone marrow mesenchymal stem cells attenuate lung injury induced by intestinal ischemia reperfusion via the TLR4/NF-kappaB pathway. International Journal of Medical Sciences 16, 1238-1244 (2019).
28 Khatri, M., Richardson, L. A. & Meulia, T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Research and Therapy 9, doi:10.1186/s13287-018-0774-8 (2018).
29 Hayes, M. et al. Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Medicine Experimental 3, doi:10.1186/s40635-015-0065-y (2015).
30 Peng, C. K. et al. Protective Effects of Neural Crest-Derived Stem Cell-Conditioned Media against Ischemia-Reperfusion-Induced Lung Injury in Rats. Inflammation 40, 1532-1542, doi:10.1007/s10753-017-0594-5 (2017).
31 Tang, X. D. et al. Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by Ang-1 mRNA. 35, 1849-1859, doi:10.18632/oncotarget.17320
10.1002/stem.2619 (2017).
32 Su, V. Y. F., Lin, C. S., Hung, S. C. & Yang, K. Y. Mesenchymal stem cell-conditioned medium induces neutrophil apoptosis associated with inhibition of the NF-κb pathway in endotoxin- induced acute lung injury. International Journal of Molecular Sciences 20, doi:10.3390/ijms20092208 (2019).
33 Xu, N. et al. Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhalation Toxicology, doi:10.1080/08958378.2019.1597220 (2019).
34 Yi, X. et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Experimental cell research 383, doi:10.1016/j.yexcr.2019.05.035 (2019).
35 Zhu, Y. G. et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32, 116-125, doi:10.1002/stem.1504 (2014).
36 Lee, J. H., Park, J. & Lee, J. W. Therapeutic use of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. Transfusion 59, 876-883, doi:10.1111/trf.14838 (2019).
37 Shah, T. G., Predescu, D. & Predescu, S. Mesenchymal stem cells-derived extracellular vesicles in acute respiratory distress syndrome: a review of current literature and potential future treatment options. Clin Transl Med 8, 25, doi:10.1186/s40169-019-0242-9 (2019).
38 Lewis, S. R., Pritchard, M. W., Thomas, C. M. & Smith, A. F. Pharmacological agents for adults with acute respiratory distress syndrome. The Cochrane database of systematic reviews 7, CD004477, doi:10.1002/14651858.CD004477.pub3 (2019).
39 Mei, S. H. et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS medicine 4, e269, doi:10.1371/journal.pmed.0040269 (2007).
40 Gupta, N. et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. Journal of Immunology 179, 1855-1863, doi:10.4049/jimmunol.179.3.1855 (2007).
41 Matthay, M. A. et al. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138, 965-972, doi:10.1378/chest.10-0518 (2010).
42 Ratajczak, J. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847-856, doi:10.1038/sj.leu.2404132 (2006).
43 Huppert, L. A. M. D., Matthay, M. A. M. D. & Ware, L. B. M. D. Pathogenesis of Acute Respiratory Distress Syndrome. [Review]. Seminars in Respiratory & Critical Care Medicine February 40, 31-39 (2019).
44 Amato, M. B. et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. The New England journal of medicine 338, 347-354, doi:10.1056/NEJM199802053380602 (1998).
45 Acute Respiratory Distress Syndrome, N. et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The New England journal of medicine 342, 1301-1308, doi:10.1056/NEJM200005043421801 (2000).
46 Brower, R. G. et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. The New England journal of medicine 351, 327-336, doi:10.1056/NEJMoa032193 (2004).
47 Fan, E. et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 195, 1253-1263, doi:10.1164/rccm.201703-0548ST (2017).
48 Guerin, C. et al. Prone positioning in severe acute respiratory distress syndrome. The New England journal of medicine 368, 2159-2168, doi:10.1056/NEJMoa1214103 (2013).
49 Amato, M. B. et al. Driving pressure and survival in the acute respiratory distress syndrome. The New England journal of medicine 372, 747-755, doi:10.1056/NEJMsa1410639 (2015).
50 Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial, I. et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. Jama 318, 1335-1345, doi:10.1001/jama.2017.14171 (2017).
51 Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147, doi:10.1126/science.284.5411.143 (1999).
52 Zheng, G. et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respiratory research 15, 39, doi:10.1186/1465-9921-15-39 (2014).
53 Wilson, J. G. et al. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. American Journal of Respiratory and Critical Care Medicine 191 (2015).
54 Matthay, M. A. et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. The Lancet. Respiratory medicine 7, 154-162, doi:10.1016/S2213-2600(18)30418-1 (2019).
55 Rani, S., Ryan, A. E., Griffin, M. D. & Ritter, T. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Molecular therapy : the journal of the American Society of Gene Therapy 23, 812-823, doi:10.1038/mt.2015.44 (2015).
56 Famous, K. R. et al. Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. Am J Respir Crit Care Med 195, 331-338, doi:10.1164/rccm.201603-0645OC (2017).