Alam, F. I., & Faruqui, R. U. (2011). Optimized calculations of haralick texture features. European Journal of Scientific Research, 50(4), 543-553.
Alic, L., Niessen, W. J., & Veenland, J. F. (2014). Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS One, 9(10), e110300. doi:10.1371/journal.pone.0110300
American Psychiatric Association., & American Psychiatric Association. DSM-5 Task Force. (2013). Diagnostic and statistical manual of mental disorders : DSM-5 (5th ed.). Washington, D.C.: American Psychiatric Association.
Atmaca, M., Aydin, A., Tezcan, E., Poyraz, A. K., & Kara, B. (2006). Volumetric investigation of brain regions in patients with conversion disorder. Prog Neuropsychopharmacol Biol Psychiatry, 30(4), 708-713. doi:10.1016/j.pnpbp.2006.01.011
Atmaca, M., Baykara, S., Mermi, O., Yildirim, H., & Akaslan, U. (2016). Pituitary volumes are changed in patients with conversion disorder. Brain Imaging Behav, 10(1), 92-95. doi:10.1007/s11682-015-9368-6
Aybek, S., Nicholson, T. R., Draganski, B., Daly, E., Murphy, D. G., David, A. S., & Kanaan, R. A. (2014). Grey matter changes in motor conversion disorder. J Neurol Neurosurg Psychiatry, 85(2), 236-238. doi:10.1136/jnnp-2012-304158
Aybek, S., Nicholson, T. R., O'Daly, O., Zelaya, F., Kanaan, R. A., & David, A. S. (2015). Emotion-motion interactions in conversion disorder: an FMRI study. PLoS One, 10(4), e0123273. doi:10.1371/journal.pone.0123273
Aybek, S., Nicholson, T. R., Zelaya, F., O'Daly, O. G., Craig, T. J., David, A. S., & Kanaan, R. A. (2014). Neural correlates of recall of life events in conversion disorder. JAMA Psychiatry, 71(1), 52-60. doi:10.1001/jamapsychiatry.2013.2842
Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. J Neurosci, 27(31), 8161-8165. doi:10.1523/JNEUROSCI.1554-07.2007
Baykara, M., Koca, T. T., Demirel, A., Berk, E., & and, a. (2018). Magnetic resonance imaging evaluation of the median nerve using histogram analysis in carpal tunnel syndrome. Neurological Sciences and Neurophysiology, 145-150.
Baykara, M., & Sagiroglu, S. (2019). An evaluation of magnetic resonance imaging with histogram analysis in patients with idiopathic subjective tinnitus. North Clin Istanb, 6(1), 59-63. doi:10.14744/nci.2018.72593
Baykara, S., Baykara, M., Mermi, O., Yildirim, H., & Atmaca, M. (2021). Magnetic resonance imaging histogram analysis of corpus callosum in a functional neurological disorder. Turk J Med Sci, 51(1), 140-147. doi:10.3906/sag-2004-252
Baykara, S., Baykara, M., Mermİ, O., Yildirim, H., & Atmaca, M. (2021). Magnetic resonance imaging histogram analysis of corpus callosum in a functional neurological disorder. Turkish journal of medical sciences, 51(1), 140-147.
Castellano, G., Bonilha, L., Li, L. M., & Cendes, F. (2004). Texture analysis of medical images. Clin Radiol, 59(12), 1061-1069. doi:10.1016/j.crad.2004.07.008
Dhruv, B., Mittal, N., & Modi, M. (2019). Study of Haralick's and GLCM texture analysis on 3D medical images. Int J Neurosci, 129(4), 350-362. doi:10.1080/00207454.2018.1536052
Ganeshan, B., Miles, K. A., Young, R. C., & Chatwin, C. R. (2007). Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol, 62(8), 761-768. doi:10.1016/j.crad.2007.03.004
Ganeshan, B., Miles, K. A., Young, R. C., & Chatwin, C. R. (2009). Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol, 70(1), 101-110. doi:10.1016/j.ejrad.2007.12.005
Giedd, J. N., Raznahan, A., Mills, K. L., & Lenroot, R. K. (2012). Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol Sex Differ, 3(1), 19. doi:10.1186/2042-6410-3-19
Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786-804.
Hett, K., Lyu, I., Trujillo, P., Lopez, A. M., Aumann, M., Larson, K. E., . . . Claassen, D. O. (2021). Anatomical texture patterns identify cerebellar distinctions between essential tremor and Parkinson's disease. Human Brain Mapping.
Kassner, A., & Thornhill, R. E. (2010). Texture analysis: a review of neurologic MR imaging applications. AJNR Am J Neuroradiol, 31(5), 809-816. doi:10.3174/ajnr.A2061
Kurtul, N., & Baykara, M. (2018). The association between MRI texture analysis and chemoradiotherapy outcomes in glioblastoma cases. Ann Med Res, 25(4), 1.
Latha, M., & Kavitha, G. (2018). Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain. MAGMA, 31(4), 483-499. doi:10.1007/s10334-018-0674-z
McLaren, C. E., Chen, W. P., Nie, K., & Su, M. Y. (2009). Prediction of malignant breast lesions from MRI features: a comparison of artificial neural network and logistic regression techniques. Acad Radiol, 16(7), 842-851. doi:10.1016/j.acra.2009.01.029
Molina, D., Perez-Beteta, J., Luque, B., Arregui, E., Calvo, M., Borras, J. M., . . . Perez-Garcia, V. M. (2016a). Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival. Br J Radiol, 89(1064), 20160242. doi:10.1259/bjr.20160242
Molina, D., Perez-Beteta, J., Luque, B., Arregui, E., Calvo, M., Borras, J. M., . . . Perez-Garcia, V. M. (2016b). Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival. Br J Radiol, 20160242. doi:10.1259/bjr.20160242
Radulescu, E., Ganeshan, B., Shergill, S. S., Medford, N., Chatwin, C., Young, R. C., & Critchley, H. D. (2014). Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia. Psychiatry Res, 223(3), 179-186. doi:10.1016/j.pscychresns.2014.05.014
Reynolds, E. H. (2012). Hysteria, conversion and functional disorders: a neurological contribution to classification issues. Br J Psychiatry, 201(4), 253-254. doi:10.1192/bjp.bp.111.107219
Sudheesh, K., & Basavaraj, L. (2021). Qualitative Approach of Empirical Mode Decomposition-Based Texture Analysis for Assessing and Classifying the Severity of Alzheimer’s Disease in Brain MRI Images. In Advances in Artificial Intelligence and Data Engineering (pp. 1227-1253): Springer.
Suo, S. T., Zhuang, Z. G., Cao, M. Q., Qian, L. J., Wang, X., Gao, R. L., . . . Xu, J. R. (2016). Differentiation of pyogenic hepatic abscesses from malignant mimickers using multislice-based texture acquired from contrast-enhanced computed tomography. Hepatobiliary Pancreat Dis Int, 15(4), 391-398.
Tixier, F., Hatt, M., Le Rest, C. C., Le Pogam, A., Corcos, L., & Visvikis, D. (2012). Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med, 53(5), 693-700. doi:10.2967/jnumed.111.099127
Vuilleumier, P. (2014). Brain circuits implicated in psychogenic paralysis in conversion disorders and hypnosis. Neurophysiol Clin, 44(4), 323-337. doi:10.1016/j.neucli.2014.01.003
Vuilleumier, P., Chicherio, C., Assal, F., Schwartz, S., Slosman, D., & Landis, T. (2001). Functional neuroanatomical correlates of hysterical sensorimotor loss. Brain, 124(Pt 6), 1077-1090.
Yang, D., Rao, G., Martinez, J., Veeraraghavan, A., & Rao, A. (2015). Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys, 42(11), 6725-6735. doi:10.1118/1.4934373
Yildirim, M., & Baykara, M. (2020). Differentiation of Multiple Myeloma and Lytic Bone Metastases: Histogram Analysis. J Comput Assist Tomogr, 44(6), 953-955. doi:10.1097/RCT.0000000000001086