[1]. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
[2]. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
[3]. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108.
[4]. Tanaka, J., et al., ANGPTL4 regulates the metastatic potential of oral squamous cell carcinoma. J Oral Pathol Med, 2015. 44(2): p. 126-33.
[5]. Wang, Z., et al., Expression of angiopoietin-like 4 and tenascin C but not cathepsin C mRNA predicts prognosis of oral tongue squamous cell carcinoma. Biomarkers, 2010. 15(1): p. 39-46.
[6]. Huang, Z., et al., The downregulation of ANGPTL4 inhibits the migration and proliferation of tongue squamous cell carcinoma. Arch Oral Biol, 2016. 71: p. 144-149.
[7]. Xu, A., et al., Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A, 2005. 102(17): p. 6086-91.
[8]. Lan, H., et al., MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int, 2015. 2015: p. 125094.
[9]. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
[10]. Kim, I., et al., Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J, 2000. 346 Pt 3: p. 603-10.
[11]. Zhu, P., et al., Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell, 2011. 19(3): p. 401-15.
[12]. Kim, S.H., et al., ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res, 2011. 71(22): p. 7010-20.
[13]. Zhang, Z., et al., Acquisition of anoikis resistance reveals a synoikis-like survival style in BEL7402 hepatoma cells. Cancer Lett, 2008. 267(1): p. 106-15.
[14]. Xu, A., et al., Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A, 2005. 102(17): p. 6086-91.
[15]. Clement, L.C., et al., Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med, 2011. 17(1): p. 117-22.
[16]. Yi, J., et al., Clinical significance of angiopoietin-like protein 4 expression in tissue and serum of esophageal squamous cell carcinoma patients. Med Oncol, 2013. 30(3): p. 680.
[17]. Li, K.Q., et al., Anti-tumor effect of recombinant retroviral vector-mediated human ANGPTL4 gene transfection. Chin Med J (Engl), 2004. 117(9): p. 1364-9.
[18]. Hu, J., et al., Angiopoietin-like 4: a novel molecular hallmark in oral Kaposi's sarcoma. Oral Oncol, 2011. 47(5): p. 371-5.
[19]. Le Jan, S., et al., Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol, 2003. 162(5): p. 1521-8.
[20]. Katanasaka, Y., et al., Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer, 2013. 12: p. 31.
[21]. Huang, R.L., et al., ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood, 2011. 118(14): p. 3990-4002.
[22]. Izraely, S., et al., The metastatic microenvironment: brain-residing melanoma metastasis and dormant micrometastasis. Int J Cancer, 2012. 131(5): p. 1071-82.
[23]. Li, H., et al., Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology, 2011. 54(3): p. 910-9.
[24]. Nakayama, T., et al., Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep, 2011. 25(4): p. 929-35.
[25]. Zhang, S., et al., hsa-miR-29c-3p regulates biological function of colorectal cancer by targeting SPARC. Oncotarget, 2017. 8(61): p. 104508-104524.
[26]. Fang, R., et al., Downregulation of miR-29c-3p is associated with a poor prognosis in patients with laryngeal squamous cell carcinoma. Diagn Pathol, 2019. 14(1): p. 109.
[27]. Hudcova, K., et al., Expression profiles of miR-29c, miR-200b and miR-375 in tumour and tumour-adjacent tissues of head and neck cancers. Tumour Biol, 2016. 37(9): p. 12627-12633.
[28]. Qin, S., et al., Transcription Factor and miRNA Interplays Can Manifest the Survival of ccRCC Patients. Cancers (Basel), 2019. 11(11).
[29]. Pereira, T., et al., MicroRNA profiling reveals dysregulated microRNAs and their target gene regulatory networks in cemento-ossifying fibroma. J Oral Pathol Med, 2018. 47(1): p. 78-85.
[30]. Wang, X., et al., MicroRNA-223 and microRNA-21 in peripheral blood B cells associated with progression of primary biliary cholangitis patients. PLoS One, 2017. 12(9): p. e0184292.
[31]. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): p. 215-33.
[32]. Baek, D., et al., The impact of microRNAs on protein output. Nature, 2008. 455(7209): p. 64-71.
[33]. Guo, H., et al., Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010. 466(7308): p. 835-40.
[34]. Eichhorn, S.W., et al., mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell, 2014. 56(1): p. 104-15.