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Abstract

Vertebrate evolution was accompanied with two rounds of whole genome duplication followed by
functional divergence in terms of regulatory circuits and gene expression patterns. As a basal and slow-
evolving chordate species, amphioxus is an ideal paradigm for exploring the origin and evolution of
vertebrates. Single cell sequencing has been widely employed to construct the developmental cell atlas of
several key species of vertebrates (human, mouse, zebrafish and frog) and tunicate (sea squirts). Here,
we performed single-nucleus RNA sequencing (snRNA-seq) and single-cell assay for transposase
accessible chromatin sequencing (scATAC-seq) for different stages of amphioxus (covering
embryogenesis and adult tissues). With the datasets generated we constructed the developmental tree for
amphioxus cell fate commitment and lineage specification, and revealed the underlying key regulators
and genetic regulatory networks. The generated data were integrated into an online platform,
AmphioxusAtlas, for public access at http://120.79.46.200:81/AmphioxusAtlas.

Introduction

The origin of vertebrates has been a central topic for centuries in the field of evolutionary and
developmental biology. Cephalochordates (commonly called amphioxus or lancelets) and urochordates
(also known as tunicates) are sister groups of vertebrates, and thus are key animals for understanding
the evolution of vertebrates. However, during the past 500 million years, while the tunicates have evolved
very derived morphology and genome through rapid evolution’2, amphioxus has evolved at very slow rate
and retained most morphological and genomic features of ancestral chordates®*. Moreover, compared to
tunicate embryogenesis, which is largely determinant with early decision of cell fates, amphioxus
development is highly regulative as that of vertebrates?. In line with these, developmental and genomic
studies have suggested that the gene regulatory network governing amphioxus early development is
highly homologous to those in vertebrates®.

Transcriptomic and chromatin accessibility profiling at single cell level have been increasingly used to
dissect the early developmental program in model and non-model organisms®?®. To dissect the
mechanisms of cell lineage specification and the logic of the regulatory network of amphioxus embryos
and shed insights into the origin of vertebrates, we performed snRNA-seq and scATAC-seq of amphioxus
Branchiostoma floridae embryos from late blastula to early larval stages. From these datasets, the
developmental trajectory of the different cell lineages and the underlying regulatory modules were
resolved based on expression of canonical marker genes and corresponding chromatin states. Single-
nucleus expression profiling was also performed for different amphioxus adult tissues. A comprehensive
online platform was developed for storage and public access of these datasets.

Results

A single-cell transcriptional atlas of the amphioxus embryo
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In amphioxus, the fertilized egg cleaves rapidly to form the blastula as a single-layered ball of cells®,
which then gastrulates by simple invagination of the vegetal pole inward the animal pole. Using the
SPLiT-seq protocol'®, we performed snRNA-seq sequencing of amphioxus (Branchiostoma floridae)
embryos across nine stages from late blastula to early larva (Figure 1A, B), profiling a total of 148, 875
single cells. After quality control, data from 7508 to 24383 individual cells for each stage were used for
further analysis (Figure 1B), with median genes ranging from 254 to 764 per cell (Supplementary Table
S1).

Projection of these transcriptomes using the Uniform Manifold Approximation and Projection for
dimensionality reduction (UMAP)'" identified coherent clusters of cells at different stages or when pooled
together (Figure 1B and Supplementary Figure 1). Differentially expressed cluster-specific genes were
identified using Model-based Analysis of Single-cell Transcriptomics (MAST)'2 and the identities of each
cluster were annotated based on the expression of key marker genes (Figure 1B, C).

To remove the batch-effects from different stages during constructing the UMAP atlas, we develop a
simple algorithm to construct the single-cell network as a replacement of the k-nearest-neighbor (KNN)
searching step of UMAP and to facilitate lineage-tree construction (Materials and Methods). The two-
dimensional (2D) projection of the single-cell network shows that the cells were clearly clustered into
different lineages with preservation of the order of developmental stages (Figure 1B), as suggested by the
expression of the lineage-specific markers (Figure 1C, Wnt8 for mesoderm, Sox77 for endoderm, Hu-Elav
for neural ectoderm, Chrd for notochord, FoxJ7 and Keratin for epithelial ectoderm’1°. A virtual lineage
tree was constructed by taking the pre-defined clusters in each stage as nodes and connecting nodes
across time points by “ancestor voting” based on the single-cell network (Materials and Methods, Figure
1D, E). At late blastula stage, the primordial germ cells (PGCs), and endodermal trajectories were already
distinguished, while the ectodermal and mesodermal lineages were clustered together, which then broke
into the epithelial ectodermal and neural ectodermal, and notochord and somite mesodermal lineages,
respectively, at early gastrula stage (G3). On the lineage tree, the notochord lineage was well established
early at the mid-gastrula stage (G3), which then broke into two lineages at early neurula stage (N1).
However, plotting of the cell clusters suggested that the two clusters more likely represent different
phases of the same cell population rather than two different sub-lineages (Supplementary Figure 2). The
somite mesodermal lineage (G3.2) broke into 3 lineages, with the G5.7 lineage representing the anterior
pharyngeal mesoderm (expressing Eya, Six4/5, and Pax3/7)1%17 the G5.3 lineage representing the
posterior pharynx mesoderm (expressing Hox77)'8 and the G5.5 lineage likely representing the posterior
tailbud mesoderm, which expresses the posterior marker Cdx (Figure 1E and Supplementary Figure 3)°.
The endodermal lineage (G3.1) differentiated into the anterior pharynx lineage (expressing Six3/6 and
Nkx2.7)1720 and posterior gut lineage (expressing Pax7/9, llp and Msxix)2'23, which further differentiated
into fore-, mid-, and hind-gut lineages at L0 stage (Figure 1E and Supplementary Figure 4). The neural
ectodermal lineage differentiated into three populations at N3 stage, with the N3.4 and N3.7 representing
the anterior (expressing higher Otx, Fezf, Pax4/6, Six3/6, Lhx2/9, OligA, OligB/C and Brn1/2/4)172427 and
posterior (expressing higher Gbx, Wnt7b, Pax2/5/8, Cdx, Hox1, Hox3 and Msx) cell populations'8192528
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31 The N3.12 lineage represents differentiated neurons, expressing highly the neuronal markers and
transporters, including Pouf1, Hu_Elav, Tlx, VaChT, VGLUT, VGAT, ChAT, etc (Figure 1E and Supplementary
Figure 5)14273234 The identity of the G3.5 lineage was not assigned, which expresses highly cell cycle
related genes with few tissue specific markers (Supplementary Table 2).

Single-cell chromatin accessibility profiling of amphioxus development

We performed single-cell ATAC-seq from samples ranging from gastrula to larva, and obtained data for
around 37,000 cells passing quality control measures (Figure 2A and Supplementary Table 3).
Specifically, the chromatin accessibility status of 1535, 10091, 6398, 9703, 5225 and 4880 cells were
analyzed from blastula, early gastrula, late gastrula, early neurula, middle neurula and larva, respectively
(Figure 2A and Supplementary Table 3). Genomic feature analysis showed more than 25% of peaks fell
within the promoter regions of genes (Supplementary Figure 6). Low-dimensional visualization of the
chromosome accessibility atlas at six stages revealed increasing complexity during embryogenesis
(Figure 2B).

To integrate the cells from snRNA-seq and scATAC-seq, the latter was first transformed into gene
activities using Cicero®® and combined with the transcriptomic data of the same stage. Then data
integration and label transfer were conducted using Harmony followed by a k-nearest-neighbor
classifier’®. UMAP visualizations showed that cells of the same type were projected proximately in both
independent and integrated analysis, confirming the reliability of our procedure (Supplementary Figure 7).
Next, we extracted the ATAC-seq data for different clusters to reveal the cell type-specific chromatin
accessibility. As expected, the chromosome opening status for the selected marker genes were well
correlated with their lineage-specificity (Figure 2B).

Verification of cell lineages by in situ hybridization

Next, we selected the intersection of differentially expressed genes (DEGs) and genes associated with
differentially accessible peaks of the same cell lineage at gastrula and neurula stage as the lineage-
specific genes, resulting in 19 potential marker genes for endoderm lineage, 57 potential marker genes for
epithelial ectoderm lineage, 9 potential marker genes for neural ectoderm lineage, 68 potential marker
genes for mesoderm lineage and 25 potential marker genes for notochord mesoderm lineage
(Supplementary Table 4). To verify the marker genes identified in above analysis, we performed in situ
hybridization with probes for 14 genes which have not been studied before (Figure 3A). Among them,
BfAlcam is enriched in neural ectoderm cell lineage, BfTsta3, BfMIp, BfGrb1/, BfLac and BfRbrin epithelial
ectoderm cell lineage, BfCreb3I2, BfCol11a1, BfRbms1 and BfSlit2 in notochord mesoderm cell lineage,
and BfSlc6alb5, BfC6, BfMim_I256 and BfHmcn in endoderm cell lineage (Figure 3A and Supplementary
Figure 8). The results show that all the 14 genes analyzed show consistent and specific expression in the
corresponding cell lineages as deduced by the transcriptomic and ATAC-seq data (Figure 3K
Supplementary Figure 7 and Supplementary Table 4, 5). For example, according to our in silico analysis,
BfAlcam is predominantly presented in the neural ectoderm cell lineage from G6 stage, and weakly in the
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the epithelial ectoderm cell lineage from N1 stage (Figure 3A). Indeed, the in situ hybridization results of
BfAlcam showed an expression pattern exactly fitting with our prediction at these stages (Figure 3B),
supporting our cell lineage assignment from the transcriptomic and ATAC-seq data.

The timing of zygotic genome activation in amphioxus embryos

During early embryonic development, the zygotic genome is gradually activated and the maternal factors
are cleared during the process known as maternal-to-zygotic transition. In many species, the zygotic
genome activation (ZGA) is characterized by a minor wave during the early cleavage stage followed by a
major wave when the cell division slows down®’. The timing of ZGA varies widely across animals. Here,
we attempted to infer the timing of ZGA in amphioxus based on our snRNA-seq data. We plotted the
number of detected genes at each stage. There is a slight increase at 32-cell stage and a sharp increase
was observed at 32-cell to blastula stage (Figure 4A), suggesting that ZGA occurred most likely during
this period. We then examined the expression of known zygotic genes during early development and
found that their expressions seemed to initiate at about 32-cell to blastula stage and climaxed at gastrula
stage (Figure 4B). To assess the embryonic genome activation (EGA), the stage-specific highly expressed
gene transcripts were extracted by comparing their transcriptome to those of previous neighboring stages
respectively (Supplementary Table 6). GO enrichment analysis showed that the RNA metabolism related
genes, which are known to be crucial for early embryonic development383°, were strongly activated at 32-
cell stage (Figure 4C). Overall, these observations suggest that ZGA occurs at 32-cell to blastula stage in
amphioxus. Interestingly, a group of neural related genes became activated at blastula stage (Figure 4C).
This phenomenon most likely reflect a local planar neural induction event at the border of the notochordal
mesoderm and the ectoderm, as the notochordal mesoderm has not invaginated to underline the
ectoderm for the major neural induction event to occur at this stage

A single-nucleus transcriptomic atlas of amphioxus adult tissues

We also performed snRNA-seq of different amphioxus adult tissues, including neural tube, epidermis,
notochord, endostyle, etc, to explore their cell populations (Figure 5A, B and Supplementary Table 7).
Specifically, 16 and 7 cell clusters were identified in the neural tube and epidermis respectively (Figure
5B). Interestingly, the cluster 2 of epidermis showed more neural characters when compared with the
neural clusters, with high expression of Coe, MAP18 and Hu-Elav (Figure 5C, D). This group of cells most
likely represents a group of epidermis—derived neural cells in the epidermis. During amphioxus embryonic
development, the epidermal sensory neurons were among the earliest differentiated neurons, which
appear at late neurula stage*®. However, this group of cells was not detected in our developmental
lineage analysis (Figure 1E). This could be due to either insufficient sequencing depth of our data, the
cells could be clustered into the neural groups, or that there is no distinct difference between epidermal
neurons and other cells in epidermis. A cell lineage tracing experiment should help to clarify this issue.

A multi-omics resource center for amphioxus
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To fully exploit the valuable resources generated here, we developed a dedicated and comprehensive
online platform named AmphioxusAtlas (freely accessible at http://120.79.46.200:81/AmphioxusAtlas),
enabling the browsing and querying of processed single-cell data from blastula to larvae and bulk data
from gametes to adults. AmphioxusAtlas is mainly composed of five functional modules:
scTranscriptomic, scEpigenetic, Trajectory, BulkRNAseq and TissueAtlas. In the scTranscriptomic module,
we presented the UMAP plot of scRNAseq data for all the stages, along with differentially expressed
genes (DEGs) in each cluster, and GO/KEGG terms enriched in corresponding DEGs. Additionally, a query
box was provided for users to search the featureplot and boxplot for the expression pattern of any gene
of interest. In the scEpigenetic module, users could browse the basic chromatin accessibility information
(including the genomic coordinates for ATAC peaks, putative target genes, and transcription factor motifs
enriched in the peaks), and the ATAC signatures for specific genes in each cluster could be queried. In the
trajectory module, users could search for the chromatin accessibility and expression profile of a given
gene simultaneously to trace their dynamic changes during cell fate commitment and lineage
specification. In the bulkRNAseq module, users could obtain the longitudinal characteristics of genes
during distinct developmental time points. In TissueAtlas module, the gene expression patterns in
different tissues of adult amphioxus were demonstrated.

Discussion

Overall, we generated the first single cell atlas for amphioxus, a basal chordate lineage of particular value
for studying the evolution and development of vertebrate. These results could be valuable for
understanding the origin and evolution of chordate and throw light upon the genetic and epigenetic
mechanism underling phenotype novelty of chordate during evolution. Embryo development relies on
precise temporal regulation of various transcription factors, which subsequently activate the expression
of hundreds of downstream targets. Here, we profiled 148, 875 cells from nine developmental stages and
constructed the first amphioxus developmental trajectory at single cell resolution, systematically
depicting the molecular dynamics underlying developmental amphioxus. On top of that, we identified a
variety of key regulators and developmental genes during amphioxus embryogenesis, including both well-
known transcription factors essential for embryonic development in vertebrates and tunicates, as well as
novel genes with previously unrecognized functions.

Gene expression regulation is a fundamental question in developmental biology, as developmental
patterns are largely determined by the restricted spatial-temporal expression domains of developmental
genes, orchestrated by the dynamic interactions between a variety of transcription factors and
corresponding cis regulatory elements (CREs). Traditionally, CREs have been detected using time-
consuming experimental methods such as enhancer trapping, systematic sequence deletions and
mutations. Later on, ATAC-seq opens the gate to screen for putative CREs at genome-wide scale and
SCATAC-seq enables researchers to explore the heterogeneity of CREs among distinct lineages and
stages. Our study painted a systemic epigenetic portrait for the sequential linage specification of
endoderm, mesoderm, notochord, neural ectoderm, epithelial ectoderm, and primordial germ cells.
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As another proto-vertebrate group, the early development of ascidians is largely determinant and the
embryonic cell lineages can be clearly traced back to individual blastomere at the initial gastrula stage®.
Compared with ascidians, which shows increasing neural lineages at neurula and tailbud stages,
amphioxus embryos showed much less complexity in the early neural development. As a basal chordate,
amphioxus holds the key to understand the origin and evolution of vertebrate cell types. Although awaits
further annotation, our single-cell transcriptomic and epigenomic analysis of amphioxus embryos and
adult tissues lay the basis for future related studies.

Materials And Methods

1. Animal husbandry

Amphioxus Branchiostoma floridae were obtained from Dr. Jr-Kai Yu's laboratory at the Institute of
Cellular and Organismic Biology, Academia Sinica, Taiwan. They were maintained and induced to spawn
following the protocol as we described and used in B. belcheri*'#2. Eggs fertilization and embryos culture
were carried out according to our previous report*3. Embryos are staged according to a recent study?®.

2. Single cell RNA sequencing library preparation

We prepared snRNA-seq libraries on the Split-seq platform'®. Embryos at indicated stages were harvested
and stored in RNAlater solution (AM7020, Ambion). Nuclei extraction was performed as described'°.
Briefly, indicated embryos were transferred into a 1 mL Dounce homogenizer containing 1TmL
homogenizing buffer (250 mM sucrose, 25 mM KCl, 5 mM MgCl,, and 10 mM Tris [pH=8.0]; 1 uM DTT,
RNase Inibitor and 0.1% Triton-X100). 5-10 strokes of loose pestle followed by 10-20 strokes of tight
pestle were performed. The homogenates were filtered with a 40 um strainer into 5 mL Eppendorf tubes
and then spun down for 4 minutes at 600 g at 4°C. The pellet was re-suspended and washed in 1T mL of
PBS containing RNase inhibitors and 0.1% BSA. At last the nuclei were passed through a 40 ym strainer
again before being counted. The nuclei were split into 48 wells, each containing barcoded well-specific
reverse transcription primer, for in-cell reverse transcription. The second and third barcoding consist of a
ligation reaction. After the third round of barcoding, the nuclei were divided into 16 aliquots and then
lysed before cDNA purification. Purified cDNA was subjected to template switch and a round of real-time
PCR amplification. PCR reactions were stopped at the beginning of plateau stage. At last, 600 pg purified
PCR products each were used to generate lllumina compatible sequencing libraries. Each library was
labeled by a distinct, indexed PCR primer pair, which is served as the fourth barcode.

3. Single-nucleus RNA sequencing and data processing

Libraries were sequenced on NextSeq systems (lllumina) using 150 nucleotide kits and paired-end
sequencing. Read 1 covered the transcript sequences and read 2 covered the UMI and UBC barcode
combinations. Firstly, we added the fourth barcode (sequencing index, 6 nt) at read 2 ends, then
discarded reads which had more than one mismatched base with the third barcode. Thirdly, any reads in
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UMI region had more than one low quality base (phred <=10) were also discarded. The sequencing results
were aligned to exons and introns in the reference genome
(https://www.ncbi.nlm.nih.gov/assembly/GCA_015852565.1/) and aggregated intron and exon counts at
the gene level were calculated by kallisto and bustools software as described
(https://bustools.github.io/BUS_notebooks_R).

4. Single-cell ATAC-seq library preparation

The embryos harvested at indicated stages were lysed in cold lysis buffer (10 mM Tris-HCI [pH 7.4], 10
mM NaCl, 3 mM MgCl,, 0.1% Tween-20, 0.1% NP40, 0.01% Digitonin and 1% BSA). The nuclei were
extracted by gentle pipetting for 10 times. Larvae were homogenized in 2 mL Dounce homogenizer
(SIGMA) containing 2 mL lysis buffer. Dounce homogenization and filtration were performed as
described above'?. Nuclei were pelleted by spinning at 500 g for 5 min at 4°C. Then nuclei were washed
twice by suspending pellet in chilled PBS (Gibco) with 0.04% BSA (BBI). The nuclei were re-suspended in
diluted nuclei buffer (10x Genomics). The 10x ATAC libraries were constructed according to the Single
Cell ATAC v1 workflow (https://www.10xgenomics.com/products/single-cell-atac), and proceeded with
the MGI Easy Universal Library Conversion Kit (App-A, MGI) to convert the libraries’ structure.

5. Single-cell ATAC sequencing and data processing

Libraries were sequenced on MGI2000 (MGI). Raw data were split into reads and cell barcode using
custom scripts. Reads were mapped to reference genome
(https://www.ncbi.nlm.nih.gov/assembly/GCA_015852565.1/) using Cell Ranger ATAC v1.2.0 with
default parameters. Single-cell accessibility counts were generated after running ‘cellranger-atac count'.

6. Analysis of snRNA-seq data
6.1 Data quality control and normalization for snRNA-seq data

After the matrix was exported, quality control was performed to remove low quality cells and potential
doublets. Considering the range of cell library sizes (i.e. sequencing depth) varied among stages, we
costumed different filtering thresholds (based on the number of detected genes) for each embryonic
stage, which were: B (400-3,000 genes), G3 (350-3,000 genes), G4 (250-3,000 genes), G5 (150-3,000
genes), G6 (350-3,000 genes), NO, N1 and N3 stage (150-3,000 genes), LO stage (100-3,000 genes). The
threshold for filtering the adult tissue cells was 150-3,000 genes. As a result, a total of 148,875 embryonic
cells and 235,170 adult tissue cells were remained for subsequent analysis. Furthermore, genes
expressing in less than 3 cells were filtered out. This step was implemented using the build-in functions

‘scanpy.pp.filter_cells’ and ‘scanpy.pp.filter_genes’ from ScanPy*4.

The resulting gene-by-cell matrices were then log-transformed (with a pseudo-count added) followed by
the library-size normalization, with the median of library-size as the size-factor. This was implemented
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using the two build-in functions ‘scanpy.pp.normalize_total’ and ‘scanpy.pp.log1p’ from ScanPy, for total-
count normalization and log-transformation respectively.

6.2 Cell clustering and visualization within each stage
Selection of highly variable genes

We observed that cell groups were dominated by two types of RNA capturing primers (random and polyT)
(Supplementary Figure 1). Unless special circumstances, we will refer to these two groups caused by
technical noise as “polyT group” and “random group”, respectively. To avoid their effects, highly variable
genes (HVGs) were first identified separately within each group, and then merged together. Cells in B
stage were exceptional, which were clustered into three populations that were driven by different states of
cell division, so the HVGs were selected separately in each division states.

We used the approach in Seurat v2 to identify HVGs within each group. Specifically, it calculated the
average expression and dispersion (variance or mean) for each gene and placed these genes into several
bins (30 bins in our case) based on (logarithmized) average expression. The normalized dispersions were
then obtained by scaling with the mean and standard deviation of the dispersions within each bin. Genes
with a (log-normalized) mean expressions above a certain value (costumed for each stage) and a
normalized dispersion higher than 0.25 were identified as highly variable ones. This was implemented
using the build-in function ‘scanpy.pp.highly_variable_genes’ from ScanPy. At last, we took those genes
that were highly variable in both groups and those with top dispersion as HVGs for downstream analysis
(Supplementary Table 1 and 2).

Preprocessing for dimensionality reduction

We restricted the expression matrix to those genes found highly variable. Before performing
dimensionality reduction, the gene-by-cell expression matrix was centralized and scaled. This was done
for each group of the same RNA capturing primer as described above. For B stage, the expression matrix
was centered and scaled within each cell cycle state. Besides, cell groups in this stage were much more
confounded by cell library size than other stages so we treated the logarithmized library size (i.e., counts-
per-cell) as the latent factor and regressed it out.

Visualization of stage-wise snRNA-seq data using UMAP

We first performed principle component analysis (PCA) and selected the number of top principal
components (PCs) with highest explained variances based on the “elbow” of the scree plot of the
principle components. In practice, we found the final results are quite robust to the number of selected
PCs. UMAP was performed to further embed each cell from the reduced PC space onto a 2D map. UMAP
is a graph-base manifold learning method that can provide a good visualization with the intrinsic
structure of the original data preserved. Meanwhile it is also a computationally efficient tool for large-
scale datasets. It first computes the approximate k nearest neighbors (KNNs) for each data point, building

a weighted mutual-KNN graph with each node representing each data point (cell in our case), and embeds
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each node of the graph into the lower dimensional space. Note that the Euclidean distance metric is not
scale-invariant so that it is quite sensitive to batch effects. Instead, we searched the approximate KNNs
for each single cell based on cosine distance in the PC space, with the number of neighbors setting as 20.
This was implemented using the build-in function ‘scanpy.tl.umap’ from ScanPy, which is a convenient
wrapper of the original function ‘'UMAP’ from the Python package ‘umap-learn’.

Clustering of cell populations and identification of differentially expressed genes

To cluster single cells into distinct populations, we used a graph-based clustering approach, which
applies Leiden*® community detection on the weighted KNN graph build by UMAP. The Leidenalgorithm is
very similar to the Louvain*® community detection algorithm that is wildly used for single cell clustering.
This clustering method was achieved by the build-in interface ‘scanpy.tl.leiden’ from ScanPy. Cluster-
pecific genes were found using “model-based analysis of single-celltranscriptomics” (MAST)'?
comparing each cluster versus the others, achieved by the function ‘FindAlIMarkers’ in Seurat. After
comparing the differentially expressed genes for each cluster, we manually merged those groups with no
significant difference from each other.

6.3 Visualization of the embryonic cells from all the developmental stages
Construction of the single-cell graph for the merged snRNA-seq data

In order to construct a 2D atlas of single-cells from all the developmental stages that reveals both the
stage order and the intrinsic lineage structures, we first built a single-cell graph, with nodes as cells and
edges connecting cells with similar expression profiles. A simple and direct approach is to apply a global
k-nearest-neighbor search for each cell among all the stages. However, due to the batch effects caused by
technical and biological noises, the difference of the same cell type (or lineage) across stages might be
greater than that of different cell types (or lineage) in the same stage, which can lead to the k-nearest
neighbors of each cell more likely to be in the same stage rather than its progenitor cells or daughter cells
from the adjacent stages. Therefore, a global k-nearest neighbor search without any constraints would
result in a biased single-cell network. To remove these batch effects and keep the order of stages, we
borrowed the idea from a study by Wagner et.al.” and designed a novel approach, stage-wise-KNN, for our
scRNA-seq dataset.

For genes used to calculate the single-cell network, we merged HVGs from each stage, and kept those
appeared in more than three stages. We also included some canonical marker genes collected from
published literatures. Before inputting to the next step, the expression matrices from each stage were first
z-scored (mean-shifted and scaled to unit variance) for each of the used genes. Let’'s denote the resulting

matrix X at time point ¢ with each element representing the zscore of gene iin cell j.

The single-cell network was constructed by connecting only the adjacent stage-pairs, with no edges
connecting cells in the same stage, except for the first stage (B stage). Specifically, for each pair of
adjacent stages between time point tand #1, we first applied PCA on the concatenated matrix to get the
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reduced dimensions, and searched the KNNs of each cell in stage #1 from its parent stage t, based on
the PC space. A binary edge would be connecting two cells if one is in the parent stage (the earlier
timepoint) and is detected as a member of the KNNs of the other. As the start timepoint, the B stage was
the only exception that cells in which would also connect to their KNNs in the same stage.

This single-cell network preserved the order of stages and revealed the structural relationships between
different lineages. We reasoned that if two cells in the same stage had similar expression profiles, they
would have a majority of KNNs in common from the previous stage, which would “attract” them to be
embedded onto a nearby place in the consequent 2D map.

Parameter setting

Considering the different number of cells and the varied biological complexity in different stages, we
adapted different number of PCs and nearest-neighbors for each pair of stages. We used the top 30 PCs
for pairs from B to G6 stage, and the top 50 PCs for that from B6 to L0 stage. The size of neighborhood
for cells from B to N1 stage was defined as k=10, while they were set as k=5 and k=3 for N3 and L0 stage,
respectively.

Embedding the single-cell network using a force-directed graph layout algorithm

To apply a force-directed graph layout algorithm to embed the single-cell network, we utilized the build-in
function ‘scanpy.tl.umap’ of ScanPy after setting the pre-built network in the slot “connectivities”. The
parameter “min_dist” of this function was set as 0.1.

6.4 Construction of the developmental tree

The coarse-grained developmental tree was constructed by taking previously defined clusters in each
stage as nodes and connecting nodes across timepoints by “ancestor voting”. A vote from a cell for its
ancestor cell was defined as the nearest neighbor in the previous stage, which was determined when
building the stage-wise-KNN based single-cell network. For each cluster in stage #1, its ancestor node in
stage twould be the cluster winning the largest number of votes from cells in this cluster.

A step of “group refinement” would come after the “ancestor voting” between each two adjacent stages.
In case that some clusters in stage thad no descendent nodes in stage #+1, probably because of different
cluster resolutions, they would take all the single-cells that had voted for them from the other clusters and
group a new descendent node.

We also made some manually adjustment to the developmental tree using expert knowledge, for

example, merging those branches with no significant gene expression difference. Finally, the constructed

developmental tree was visualized using the R package ‘ggtree’ 4’.

6.5 Annotation of embryonic cell populations and lineages
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Considering the unbalanced sequencing depths of different stages, library-size normalization was applied
to the raw expression counts of each cell with 1000 as the uniform size-factor, followed by log-
transformation with a pseudo-count added. Lineage-specific genes were then found using MAST by
comparing the expression profiles of cells in each lineage with those of the others, implemented by the
function ‘FindAllMarkers’ in Seurat.

GO enrichment analysis of DEGs was performed by an R package “clusterProfiler”
(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) with the customized
reference database “org.bf.eg.db” (Branchiostoma floridae). The statistical significance was adjusted and
the “pvalueCutoff” parameter was set as 0.05 for both GO and KEGG analysis. Top 20 significantly
enriched GO terms were selected to show by bubble plot.

6.6 Notochord lineage analysis

The notochord lineage cells were extracted out for further lineage analysis. HVGs were selected and
dimensionality reduction was performed using UMAP. MAST was used to find out the differential
expressed genes for each cluster that formed the notochord lineage. Diffusion pseudo-time (DPT)* was
applied to infer the pseudo-time of each cell.

The single-cell graph with re-clustering labels were further abstracted into a more concise and
interpretable graph by partition-based graph abstraction (PAGA)**. In brief, each cluster was regarded as
a node, and the weight of a connection between each pair of nodes was estimated based on a hypothesis
test against a null model. This gave us a coarse-resolution of the partitioning and allowed a more global
perspective of the intrinsic structure of the data.

7. Analysis of single-cell ATAC-seq data
7.1 Quality control and preprocessing of scATAC-seq data

Peak-cell matrics and fragment files were analyzed with Signac (v 0.2.5). For the consequent peak-cell
matrix, we filtered cells that were not adequately sequenced compared to the main populations in the
same stage. As done for snRNA-seq data, we customized different filtering thresholds (based on the
number of detected peaks) for each embryonic stage, which were: B (600-3,500 peaks), G3 (1,500-10,000
peaks), G6 (1,000-15,000 peaks), N1 and N3 (1,500-10,000 peaks), L0 (1,500-15,000 peaks). The resulting
number of cells for each stage was listed in the Supplemetary Table 2.

7.2 Independent visualization of scATAC-seq data for each stage

For independent visualization of the epigenomic data, TF-IDF transformation was applied to the peak-cell
matrix of each stage and partial singular value decomposition (SVD) and UMAP were performed for
dimensionality reduction. These steps were implemented using the built-in functions of Signac
(RunTFIDF with scale.factor=10000, RunSVD with n=50 and reduction.key = 'LSI_") and Seurat (RunUMAP
with n.neighbors = 30).
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7.3 Construction of gene activity matrix from scATAC-seq data using Cicero

Before integrating the scATAC-seq data with the snRNA-seq data, we first used Cicero®® to transform the
peak-by-cell matrices of different developmental stages into gene-by-cell matrices, with the values
representing gene activity scores. These gene activity matrices were then normalized to the uniform
column-sums, the median of the column-sums in that stage, followed by log transformation with a
pseudo-count added.

8. Integration of snRNA-seq and scATAC-seq data and label transfer

For each developmental stage with both transcriptomic and epigenetic data, we began with the
normalized gene activity scores and the normalized gene expression values calculated from the previous
analysis, z-scored (centered and scaled to unit variances) separately based on the HVGs selected from
snRNA-seq data, which was used for clustering analysis before. The resulting z-scored matrix-pair in that
stage was concatenated and used to calculating the reduced dimensions using PCA. We then corrected
the coordinates in PC space by performing Harmony, a method for removing batch effects. After that, a
KNN-classifier was built using the corrected coordinates and the cluster labels of snRNA-seq data as the
“training samples” and that from scATAC-seq data as the “testing samples”, with the predicted cluster
labels as the final transferred labels for those scATAC-seq cells.

Note that we also applied the Seurat build-in method (CCA-anchor) for integration and label-transfer. The
most of transferred labels was in consistent with that from Harmony-KNN, while with less confidences, so
we adopted the results of Harmony-KNN for the downstream analysis.

9. Combined analysis to identify new lineage specific genes

To identify new lineage marker genes, we carried out combined analysis using our epigenetic and
transcriptomic data from each stage. Briefly, we take the intersections of the DEGs (p < 0.01) and
differentially accessible peaks (p < 0.001). The candidate new lineage marker genes were selected with
high expression in two successive stages.

10. Whole mount in situ hybridization assays

Fourteen genes showing specific expression in different germ layers in both single-nuclear RNA-seq and
single-cell ATAC-seq data were chosen for this analysis. Their mMRNA sequences were amplified from a
mixed cDNA library using primers listed in (Supplementary Table 5), cloned to pGEM-T-Easy vector (PR-
A1360, Promega), and verified by DNA sequencing. Digoxigenin (DIG)-labelled antisense riboprobes
(11093088910, Roche) of all these genes were synthesized with Sp6 (P1081, Promega) or T7 (P2075,
Promega) RNA polymerase. Embryos at desired stages were fixed overnight with 4% (wt/vol) PFA-MOPS-
EGTA (pH 7.5) at 4°C, and then stored at -20°C in 70% ethanol (vol/vol) for use. Whole mount in situ
hybridization (WISH) was performed as previously described (Yu and Holland 2009 Cold Spring Harb
Protoc). Stained embryos were photographed using an inverted microscope (Olympus, IX71).
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11. Construction of website and database

HTML and PHP were used for webpage construction, and MySQL was used for the storing and query
functions. All the code was installed on a Linux Host with Apache webserver.

12. Data availability

All the snRNA-seq and scATAC-seq data have been deposited in the CNSA (https://db.cngb.org/cnsa/) of
CNGBdb with accession number CNPO000891.
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Figure 1

Single cell transcriptional atlas and cell lineage specification during amphioxus embryo development. (A)
Diagram of amphioxus embryos from blastula to early larva used for snRNA-Seq and scATAC-seq
analysis in this study. (B) UMAP plots for each developmental stage or the total 148,875 single cell
transcriptomes, constructed in dimensionality-reduced principal component analysis subspace defined by
highly covariable genes. Cells are colored by germ layer identities inferred from expressed marker genes
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or their developmental stage origins, respectively. (C) Plots of the expression of representative lineage-
specific genes in different cell populations. (D) Schematic of the mapping algorithm used to make
similarity connections between clusters across developmental stages (Materials and Methods). (E)
Virtual cell lineage tree were constructed using transcriptome profiles from sequential developmental
stages. Generated using the mapping algorithm in (D).
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Figure 2

Overview of combined analysis of single nuclear RNA-seq and ATAC-seq data for amphioxus embryos at
the indicated developmental stages. (A) UMAP plots of single cell epigenome from scATAC-seq data for
amphioxus embryos at the indicated developmental stages, which is colored by the lineage labels
transferred from the corresponding snRNA-seq data. (B) The expressions of the lineage-specific markers
from the snRNA-seq analysis correlated well with their gene activities deduced from the scATAC-seq data.
The expressions (snRNA-seq), gene activities (predicted by Cicero) and chromatin accessibilities
(visualized by IGV) for the selected genes were shown.

Page 21/25



.A. Linesg Endodanm Mesdarm Wﬂﬂ mm Epiﬁ-lieduﬂ-lrm

T T S
MgﬁEgﬂﬂzﬁ 8228 33:22 ﬁ =2 EEEEZZ

Dalaset:  snRMNA  scATAC  anRMNA  scATAC  snRNA MﬁT-lE uﬂm QﬂTﬁC

Figure 3

Identification of new lineage-specific genes through combined analysis of scRNA-seq and scATAC-seq
data and validation by whole mount in situ hybridization. (A) Hierarchical clustering of expression
heatmaps showing differentially expressed new marker genes for each cell lineage. Source data are
provided in Supplementary Table 5. (B) Whole mount in situ hybridization results showing the expression
patterns of the selected genes.
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stage. (B) Expression heatmaps of known ZGA genes during amphioxus embryo development. Values are
averaged and max-normalized for each gene, respectively. (C) Enriched GO terms of the activated genes
for each stage compared with its parent stage. Source data are provided in Supplementary Table 6.
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Figure 5

Overview of the single-nucleus RNA sequencing analysis for adult amphioxus tissues. (A) Schematic
overview of the adult amphioxus tissues used in our snRNA-Seq analysis. (B) UMAP plots of the snRNA-
seq data from 12 adult amphioxus tissues, colored by clusters. (C) Spearman correlation between each
cluster in epidermis and neural tube, based on the expressions of top 20 DEGs. (D) UMAP plots showing
the expression levels of three neural markers in epidermis and neural tube cell clusters.
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