(1) Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 1995, 95, 559-614.
(2) Mintova, S.; Jaber, M.; Valtchev, V. Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 2015, 44, 7207-7233.
(3) Min, H. K.; Cha, S. H.; Hong, S. B. Mechanistic insights into the zeolite-catalyzed isomerization and disproportionation of m-xylene. ACS Catal. 2012, 2, 971−981.
(4) Phadke, N. M.; Mansoor, E.; Bondil, M.; Head-Gordon, M.; Bell, A. T. Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. J. Am. Chem. Soc. 2019, 141, 1614-1627.
(5) Martínez-Espín, J. S.; De Wispelaere, K.; Janssens, T. V.; Svelle, S.; Lillerud, K. P.; Beato, P.; Van Speybroeck, V.; Olsbye, U. Hydrogen transfer versus methylation: On the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5. ACS Catal. 2017, 7, 5773-5780.
(6) Macht, J.; Carr, R. T.; Iglesia, E. Consequences of acid strength for isomerization and elimination catalysis on solid acids. J. Am. Chem. Soc. 2009, 131, 6554-6565.
(7) Marthala, V. R.; Jiang, Y.; Huang, J.; Wang, W.; Gläser, R.; Hunger, M. Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 14812-14813.
(8) Clark, L. A.; Sierka, M.; Sauer, J. Computational elucidation of the transition state shape selectivity phenomenon. J. Am. Chem. Soc. 2004, 126, 936-947.
(9) Wang, L.; Xu, S. D.; He, S. X.; Xiao, F. S. Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts. Nano Today 2018, 20, 74–83.
(10) Moliner, M.; Román-Leshkov, Y.; Davis, M. E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc. Nat. Acad. Sci. 2010, 107, 6164-6168.
(11) Ristanović, Z.; Chowdhury, A. D.; Brogaard, R. Y.; Houben, K.; Baldus, M.; Hofkens, J.; Roeffaers, M. B. J.; Weckhuysen, B. M. Reversible and site-dependent proton-transfer in zeolites uncovered at the single-molecule level. J. Am. Chem. Soc. 2018, 140, 14195-14205.
(12) Marcus, D. M.; Hayman, M. J.; Blau, Y. M.; Guenther, D. R.; Ehresmann, J. O.; Kletnieks, P. W.; Haw, J. F. Mechanistically significant details of the H/D exchange reactions of propene over acidic zeolite catalysts. Angew. Chem. Int. Ed. 2006, 45, 1933-1935.
(13) Schreiber, M. W.; Plaisance, C. P.; Baumgärtl, M.; Reuter, K.; Jentys, A.; Bermejo-Deval, R.; Lercher, J. A. Lewis–Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. J. Am. Chem. Soc. 2018, 140, 4849-4859.
(14) Perras, F. A.; Wang, Z.; Naik, P.; Slowing, I. I.; Pruski, M. Natural abundance 17O DNP NMR provides precise O-H distances and insights into the Brønsted acidity of heterogeneous catalysts. Angew. Chem. Int. Ed. 2017, 56, 9165-9169.
(15) Zheng, A.; Li, S.; Liu, S.; Deng, F. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc. Chem. Res. 2016, 49, 655-663.
(16) Xu, B.; Sievers, C.; Hong, S. B.; Prins, R.; van Bokhoven, J. A. Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. J. Catal. 2006, 244, 163−168.
(17) Trickett, C. A.; Osborn Popp, T. M.; Su, J.; Yan, C.; Weisberg, J.; Huq, A.; Urban, P.; Jiang, J.; Kalmutzki, M. J.; Liu, Q.; Baek, J.; Head-Gordon, M. P.; Somorjai, G. A.; Reimer, J. A.; Yaghi, O. M. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem. 2019, 11, 170−176.
(18) Haag, W. O.; Lago, R. M.; Weisz, P. B. The active site of acidic aluminosilicate catalysts. Nature 1984, 309, 589.
(19) Chen, K.; Horstmeier, S.; Nguyen, V.; Wang, B.; Crossley, S.; Pham, T.; Gan, Z.; Hung, I.; White, J. Structure and catalytic characterization of a second framework Al(IV) site in zeolite catalysts revealed by NMR at 35.2 T. J. Am. Chem. Soc. 2020, 142, 7514−7523.
(20) DeCanio, S. J.; Sohn, J. R.; Fritz, P. O.; Lunsford, J. H. Acid catalysis by dealuminated zeolite-Y: I. Methanol dehydration and cumene dealkylation. J. Catal. 1986, 101, 132-141.
(21) Sohn, J. R.; DeCanio, S. J.; Fritz, P. O.; Lunsford, J. H. Acid catalysis by dealuminated zeolite Y. 2. The roles of aluminum. J. Phys. Chem.1986, 90, 4847-4851.
(22) Beyerlein, R. A.; McVicker, G. B.; Yacullo, L. N.; Ziemiak, J. Influence of framework and nonframework aluminum on the acidity of high-silica, proton-exchanged FAU-framework zeolites. J. Phys. Chem. 1988, 92, 1967-1970.
(23) Shannon, R. D.; Gardner, K. H.; Staley, R. H.; Bergeret, G.; Gallezot, P.; Auroux, A. The nature of the nonframework aluminum species formed during the dehydroxylation of H-Y. J. Phys. Chem. 1985, 89, 4778-4788.
(24) Bhering, D. L.; Ramirez-Solis, A.; Mota, C. J. A. A density functional theory based approach to extraframework aluminum species in zeolites. J. Phys. Chem. B 2003, 107, 4342-4347.
(25) Mota, C. J. A.; Bhering, D. L.; Rosenbach, N., Jr. A DFT study of the acidity of ultrastable Y zeolite: Where is the Brønsted/Lewis acid synergism? Angew. Chem. Int. Ed. 2004, 43, 3050-3053.
(26) Yi, X.; Liu, K.; Chen, W.; Li, J.; Xu, S.; Li, C.; Xiao, Y.; Liu, H.; Guo, X.; Liu, S. B.; Zheng, A. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites. J. Am. Chem. Soc. 2018, 140, 10764−10774.
(27) Liu, C.; Li, G.; Hensen, E. J.; Pidko, E. A. Nature and catalytic role of extraframework aluminum in faujasite zeolite: A theoretical perspective. ACS Catal. 2015, 5, 7024-7033.
(28) Li, S.; Zheng, A.; Su, Y.;. Zhang, H.; Chen, L.; Yang, J.; Ye, C.; Deng, F. Brønsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study. J. Am. Chem. Soc. 2007, 129, 11161-11171.
(29) Yu, Z.; Zheng, A.; Wang, Q.; Chen, L.; Xu, J.; Amoureux, J. P.; Deng, F. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angew. Chem. Int. Ed. 2010, 49, 8657-8661.
(30) Schroeder, C.; Hansen, M. R.; Koller, H. Ultrastabilization of zeolite Y transforms Brønsted-Brønsted acid pairs into Brønsted-Lewis acid pairs. Angew. Chem. Int. Ed. 2018, 57, 14281−14285.
(31) Pidko, E. A.; Hensen, E. J. M.; van Santen, R. A. Self-organization of extraframework cations in zeolites. Proc. R. Soc. London, Ser. A 2012, 468, 2070−2086.
(32) Pidko, E. A.; Hensen, E. J. M.; Zhidomirov, G. M.; van Santen, R. A. Non-localized charge compensation in zeolites: A periodic DFT study of cationic gallium-oxide clusters in mordenite. J. Catal. 2008, 255, 139−143.
(33) Li, G.; Pidko, E. A.; van Santen, R. A.; Feng, Z.; Li, C.; Hensen, E. J. M. Stability and reactivity of active sites for direct benzene oxidation to phenol in Fe/ZSM-5: A comprehensive periodic DFT study. J. Catal. 2011, 284, 194−206.
(34) Li, G.; Pidko, E. A.; Filot, I. A. W.; van Santen, R. A.; Li, C.; Hensen, E. J. M. Catalytic properties of extraframework iron-containing species in ZSM-5 for N2O decomposition. J. Catal. 2013, 308, 386−397.
(35) Freude, D.; Hunger, M.; Pfeifer, H.; Schwieger, W. 1H MAS NMR-studies on the acidity of zeolites. Chem. Phys. Lett. 1986, 128, 62-66.
(36) Brunner, E.; Pfeifer H. NMR Spectroscopic techniques for determining acidity and basicity//Acidity and Basicity. Springer, Berlin, Heidelberg, 2007, 1-43.
(37) Haw, J. F.; Xu, T.; Nicholas, J. B.; Gorgune, P. W. Solvent-assisted proton transfer in catalysis by zeolite solid acids. Nature 1997, 389, 832-835.
(38) Lunsford, J. L.; Rothwell, W. P.; Shen, W. Acid sites in zeolite Y: A solid-state NMR and infrared study using trimethylphosphine as a probe molecule. J. Am. Chem. Soc. 1985, 107, 1540-1547.
(39) Peng, L.; Chupas, P. J.; Grey, C. P. Measuring Brønsted acid densites in zeolite HY with diphosphine molecules and solid state NMR spectroscopy. J. Am. Chem. Soc. 2004, 126, 12254-12255.
(40) Peng, L.; Grey, C. P. Diphosphine probe molecules and solid-state NMR investigations of proximity between acidic sites in zeolite HY. Micropor. Mesopor. Mater. 2008, 116, 277-283.
(41) Jiang, Y. J.; Huang, J.; Dai, W. L.; Hunger, M. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl. Magn. Reson. 2011, 39, 116-141.
(42) Zheng, A.; Li, S.; Liu, S. B.; Deng, F. 31P NMR chemical shifts of phosphorous probes as reliable and practical acidity scales for solid and liquid catalysts. Chem. Rev. 2017, 117, 12475−12531.
(43) Lewis, J. D.; Ha, M.; Luo, H.; Faucher, A.; Michaelis, V. K.; Román-Leshkov, Y. Distinguishing active site identity in Sn-beta zeolites using 31P MAS NMR of adsorbed trimethylphosphine oxide. ACS Catal. 2018, 8, 3076-3086.
(44) Seo, Y.; Cho, K.; Jung, Y.; Ryoo, R. Characterization of the surface acidity of MFI zeolite nanosheets by 31P NMR of adsorbed phosphine oxides and catalytic cracking of decalin. ACS Catal. 2013, 3, 713-720.
(45) Harris, J. W.; Liao, W. C.; Di Iorio, J. R.; Henry, A. M.; Ong, T. C.; Comas-Vives, A.; Coperet, C.; Gounder, R. Molecular structure and confining environment of Sn sites in single-site chabazite zeolites. Chem. Mater. 2017, 29, 8824-8837.
(46) Brown, S. P.; Spiess, H. W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 2001, 101, 4125-4156.
(47) Mehio, N.; Dai, S.; Jiang, D. E. Quantum mechanical basis for kinetic diameters of small gaseous molecules. J. Phys. Chem. A 2014, 118, 1150–1154.
(48) Lin, S. L.; Nussinov, R. Molecular recognition via face center representation of a molecular surface. J. Mol. Graphics 1996, 14, 78-90.
(49) Gullion, T. Measurement of dipolar interactions between spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR. Chem. Phys. Lett. 1995, 246, 325-330.
(50) Ba, Y.; Kao, H. M.; Grey, C. P.; Chopin, L.; Gullion, T. Optimizing the 13C-14N REAPDOR NMR experiment: A theoretical and experimental study. J. Magn. Reson. 1998, 133, 104-114.
(51) Manolikas, T.; Herrmann, T.; Meier, B. H. Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. J. Am. Chem. Soc. 2008, 130, 3959-3966.
(52) Wang, Z.; O'Dell, L. A.; Zeng, X.; Liu, C.; Zhao, S.; Zhang, W.; Gaborieau, M.; Jiang, Y.; Huang, J. Insight into tri-coordinated aluminium species on ethanol-to-olefin conversion over ZSM-5 zeolites. Angew. Chem. Int. Ed. 2019, 58, 18061-18068.
(53) Wang, Z.; Wang, L.; Jiang, Y.; Hunger, M.; Huang, J. Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration. ACS Catal. 2014, 4, 1144-1147.
(54) Wang, C.; Chu, Y.; Xu, J.; Wang, Q.; Qi, G.; Gao, P.; Zhou, X.; Deng, F. Extra-framework aluminum-assisted initial C-C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angew. Chem. Int. Ed. 2018, 57, 10197-10201.
(55) Dijkmans, J.; Gabriëls, D.; Dusselier, M.; de Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B. F. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem. 2013, 15, 2777-2785.
(56) Yarulina, I.; De Wispelaere, K.; Bailleul, S.; Goetze, J.; Radersma, M.; Abou-Hamad, E.; Vollmer, I.; Goesten, M.; Mezari, B.; Hensen, E. J. M.; Martínez-Espín, J. S.; Morten, M.; Mitchell, S.; Perez-Ramirez, J.; Olsbye, U.; Weckhuysen, B. M.; Van Speybroeck, V.; Kapteijn, F.; Gascon, J. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nat. Chem. 2018, 10, 804-812.