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Abstract
TiO2-related materials or processes for 2-chlorophenol (2-CP) degradation either under UV or visible light
irradiations with key operational conditions was systematically reviewed in the beginning of this study.
Cerium (Ce), which was neighboring transition metal elements of titanium (Ti), were individually doped
with TiO2 via various methods. Three synthetic parameters in the two approaches were examined their
signi�cance by using experimental designs. It was found that the 2-CP can be 100% removal within 4-h
irradiation by visible light in the synthetic condition of 0.35 mol.% Ce, 0.15 vol.% nitric acid and calcined
at 600oC. Moreover, effects of three operation parameters of the as-prepared catalysts were further
investigated. The most e�cient condition obtained was 3 g·L− 1 catalysts at initial pH and 2-CP
concentration of 7 and 10 mg·L− 1, respectively. A critical parameter, pHpzc of undoped and Ce-doped
TiO2, were also determined. In addition, surface area, pore volume and size of both TiO2–based catalysts
were found affected by the calcination temperatures and consequently degradation e�ciency. The
presenting results and mini-review were facilitated the development and applications of TiO2 in the
degradation of 2-CP under lower energy radiations.

1. Introduction
Chlorophenols (CPs) are listed as priority toxic chemicals [1] and considered to be carcinogenic,
mutagenic, low biodegradable and di�cult to remove by conventional wastewater treatment processes
[2]. They are commonly used as precusor to  chemical prducts such as pharmaceuticals, synthetic dyes,
biocides, paints, textiles, leather products and wood preservatives [3]. Considering public health risks and
ecological impacts, it may address  the attentions as chlorophenols release from industrial wastes
incineration, residual pesticides and petroleum re�ning e�uents. Toxicological pro�les of CPs and their
derivatives were recently evaluated [3,4] as well as their environmental fates and transformations were
addressed [5]. Di-chlorophenol (2-CP) is extensively used as precursors of the higher-substituted CPs or
being generated as a by-product from plastic, papermaking, insecticidal and petrochemical industries.
Due to its high solubility in water (28 g·L-1) at room temperature, concentrations of 2-CP released in
natural aquatic environment have been reported to be 103-164 ng·L-1 in Lake Balaton, 31 ng·L-1 in River
Danube, Hungary [6], average of 82±20 ng·L-1 in River Pearl, Guangzhou [7] and 6 ng·L-1 in Taihu Lake,
China [8]. Five types of phenols have been identi�ed in e�uents of �ve sewage treatment plants [2].

In addition, to reduce the presence of phenolic substances, speci�cally 2-CP, in the surface water [8],
wastewater [2,9,10], and tap water [11], e�cient and economical degradation of it is highly critical.
Various processes such as heterogeneous photocatalysis [10], catalytic wet air oxidation [12],
photosensitized oxidation [13], hydrodechlorination [14] and titanium dioxide adsorption [15, 16] have
been initiated and proposed. Kinetics and mechanism of 2-CP via photodegradation in aquatic
environment has been reviewed [17]. Juretic et al. [18] measured SUVA254 and SUVA280 of 2-CP, and
obtained the corresponding values of three reference treatment periods utilizing UV-C/H2O2 process. TiO2

can be used alone to decompose 2-CP by irradiated either under UV [19-21], concomitant UV [22], or with
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applied external bias voltage [23]. Furthermore, the process intensi�cations and integration of TiO2

photocatalytic system includes introduction of other semiconductor, enhance adsorption, enhanced UV
light absorption via metal ion transition and application with H2O2/iron oxides [24-28].

In order to reduce energy cost, directly applying of lower energy demand such as the renewable (sun) or
the visible lights as driving sources of photocatlysis were prefered instead of UV [29-30]. The band-gap of
commercially available pristine TiO2 is large and only small fraction of the solar spectrum can be utilized
[31]. Consistent efforts to improve visible light activity (VLA) of TiO2 were diligently worked out [32].
However, there is no detailed comparison of actual 2-CP degradation e�ciency under diversed application
of irradiations and conditions studied based in literatures. Various ion doping with TiO2 using different
methods of synthesis were the popular approach to enhance its VLA [32, 33]. Pristine commercial TiO2

has been studied for its degradation e�ciencies to 2-CP using a variety of parameters from early 1990s
[19]. Since then various degradation conditions such as the initial 2-CP concentrations, types of
substituted phenols, UV irradiation wavelengths, dissolved oxygen with/out applied external bias voltage,
pH and presence of another semiconductor have been investigated [20-22,24]. Process integrations with
TiO2 photocatalysis and adsorption have been evaluated for 2-CP removal e�ciency [25]. Adsorption of
2-CP by organo-clay combined with Degussa P25 under UV irradiations was also undertaken [26].
Moreover, biological process was also integrated with the commercial TiO2 under the absence of light
and natural sunlight irradiations, whereas the study of complete removal by the sole photocatalysis and
by integrated process were achieved after 11 and 3 hours, respectively [11].

Apart from process integration with the commercial TiO2 (Degussa P25), more researchers take
approaches to enhance 2-CP degradation e�ciencies and VLA of the most popular semiconductor by
direct materials modi�cation. Buzby et al., (2006) synthesized N-doped TiO2 via plasma assisted
chemical vapor deposition of gaseous ammonia and found higher N doping amounts resulting in higher
e�ciency of 2-CP degradation under visible light irradiation [34]. Ananpattarachai et al. (2006) compared
N-doped TiO2 synthesized from three nitrogen precursors in sol-gel method [35]. Mangrulkar et al. (2012)
applied N-doped mesoporous titania to achieve 2-CP degradation of 98.62% under solar radiation [36].
Sharotri and Sud, (2016, 2015) synthesized N-doped and S-doped TiO2 by green irradiation method for
the degradation of 2-CP [37] [38]. There were studies that modi�ed the surface of TiO2 by doping with
Co(III) while others tend to doped it with triple elements [39] [40]. Nanomaterials, such as reduced
graphene oxide, carbon nanotube, In2O3 and InVO4 were used to dope TiO2 as well as Fe3O4/SiO2/TiO2

core-shell-shell nanoparticles for 2-CP removal [41-45]. A V2O5-doped TiO2 catalyst prepared by
impregnation method was used to convert two gaseous 2-CP isomers and obtained completely
conversion to CO2 at 270 oC [46]. Pt-doped TiO2 prepared by immersed coating on Ti plate and Ag-doped
TiO2 nano�bers made by sol-gel and electrospinning was synthesized for the same purpose [47-48]. Ga, I-
co-doped TiO2 was also synthesized for the degradation of 2-CP in aqueous solution [49]. Elsalamony
and Mahmoud, (2017) doped TiO2 with ruthenium and yielded 98% degradation of 2-CP directly under UV



Page 4/19

light irradiation [50]. Lin et al., (2018) applied CuSO4-doped TiO2 to degrade 2-CP and obtained 100%
removal after 6h [51].

Apart from TiO2, some nanocomposites also used as photocatalysts to degrade 2-CP. This includes Cu-
nano zeolite was demonstrated excellent adsorption capability in 2-CP reduction in real wastewater
(81.8%) with 150 min as well and e�cient in the laboratory experiment with an optimized pH of 6 [52].
The study of Aslam et al., (2016) focused on sunlight induced surface defects of nanosized CeO2 and
revealed the role of superoxide anion radicals on the 2-CP oxidation [53]. On the other hand, Abou Taleb,
(2014) synthesized Chitosan/ CoFe2O4 nanocomposite, while Rashid et al., (2014) ZrO2-doped ZnCo2O4

nanoparticles obtained 91.7% removal of 2-CP under visible light irradiation [54-55]. ZnO nanoparticles as
thin �lms without and with V doping can achieved complete degradation of 2-CP, eventually [56-57]. There
were study on nanosized CeO2 was examined its sunlight induced surface defects on photocatalytic
degradation of phenol and its derivatives [58]. But other used Ce on TiO2 synthesis for photocatalytic
degradation of 4-CP [59]. An insight of Fe(III)–porphyrin surface anchored TiO2 for improving 4-
nitrophenol photocatalytic decomposition under solar light irradiation was also studied [60].

Sidheswaran and Tavlarides, (2009) also evaluated the performance on visible light photocatalytic
activity of Ce- and Fe-doped TiO2 prepared by sol-gel method in oxidizing indoor VOCs [61]. Other
researchers use Vanadium in doping titania for the photodegradation of phenol [62]. Ce- and V-doped
TiO2 were utilized for photocatalytic degradation of 3,4-dichloroaniline under visible light irradiation [63].
Thus, in this study, Ce-doped TiO2 were synthesized and evaluated its performance via photocatalytic
degradation of 2-CP. Moreover, three operational parameters were used to evaluate its photocatalytic
degradation performance on 2-CP under simulated visible light irradiation. Part of the study is to
determine and characterize the synthesized TiO2 calcined at �ve temperatures including the pHpzc of the
pristine and Ce-doped TiO2. Based on these experiments, utilizations of the doped TiO2 could not only
contribute to e�cient photocatalytic degradation of 2-CP from materials modi�cation aspects but also
facilitated real applications in wastewater treatment processes.

2. Experimental

2.1.  Chemicals and doping methods
In this study, Ce-doped TiO2 catalysts were made by two methods, a sol-gel and a hydrothermal method.
The �rst method is similar to the method but with modi�cation reported by Tolosa et al. (2011b) where 10
mL of the Ti(OBu)4 (98%, Alfa Aesar) was added to 40 mL ethanol (EtOH, 99.5%, Merck) and mixed at a
constant stirring rate of 450 rpm for 5 min [64]. Two investigating amounts of HNO3 (0.05 or 0.15 mol.%)
was added into the mixture and continuously stirring for 10 min. Two investigating amounts (0.07 or 0.35
mol.%) of cerium (III) nitrate hexahydrate (99.5%, Sigma-Aldrich) with 5 mL of deionized water were
added and mixed. The gels were aged for 24 h to complete hydrolysis, and then incubated in an
autoclave at 121oC and 103.4 kPa. The samples were dried in an oven at 105oC. The produced xerogels
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were pulverized and then calcined at various temperatures with a heating rate of 5oC/min. The second
method as reported by Elsalamony and Mahmoud, (2017) was applied to synthesize pristine TiO2 to
compare with Ce-doped made by the �rst method [50]. The sample names were given named after
individual calcination temperatures with digits after the doping elements thereafter.

2.2.  Experimental designs, set-up and analytic methods
Design of experiments based on 23 full factorial design (FFD) was utilized the same approach with
previous study [51]. Two levels (-1 and +1) of three factors for Ce-doped TiO2 were shown in Table 1. The
responses (Y) obtained by individual photocatalytic degradation experiments were calculated based on
below equation:

Y = (C0-Ct)/C0 ×100                                                                                                                                                      
(1)

where C0 and Ct represent initial and residual concentrations of 2-CP (mg·L-1) at the 4th h. The
experimental set-up, sampling procedure, analyzed instruments and method of pHpzc measurements were
the same as previously reported [51].

3. Results And Discussion

3.1.   Effects of experimental factors for Ce-doped TiO2 on
2-CP degradations
Effects of three factors, such as (a) calcination temperature, (b) amount of dopant, and (c) amount of
nitric acid added on Ce-doped TiO2 for the degradation of 2-CP under visible light irradiation were shown
in Fig. 1. For the Ce-doped TiO2 photocatalysts synthesized by hydrothermal method, cerium amount of

0.35 mol.%, nitric acid amount of 0.15 vol.% and calcined at 600oC, the optimum degradation of 99.1%
was obtained (refer to Table 1).  Although three factors all showed positive effects with their increasing
levels in Fig. 1, it is more signi�cant of the �rst two factors (A and B) for Ce-doped TiO2 than the third (C).
The preliminary investigations were helpful for material scientists to fabricate a more suitable
photocatalyst to degrade hazardous materials, such as 2-CP, in this case.

3.2.   Effects of synthesized Ce-doped TiO2 and its
operational parameters on 2-CP degradations
The Ce-doped TiO2 made by hydrothermal method from previous optimized condition, was further
compared to a commercial TiO2 (P25) and undoped TiO2 made by both methods. This is to assess the
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contribution of cerium doping on the 2-CP degradation e�ciency of TiO2 under visible light irradiation. As
shown in Fig. 2a, the P25 TiO2 showed the lowest degradation ratio of 2-CP (38.0%) during the
continuous monitoring up to 7 hours (420 min). The best �tting of 2-CP degradation by P25 was a
polynomial quadratic equation with a R2 of 0.9990 the blue light LED irradiation. The TiO2 photocatalyst
made by sol-gel method without doping by cerium had a better of 2-CP degradation at approximately
88.8% during the 7 hours irradiation. Similar trend of 2-CP degradation utilized by the undoped TiO2

photocatalyst synthesized via hydrothermal method found to be more e�cient on the degradation of 2-
CP (93.1%) with the same time duration. Both undoped TiO2, synthesized by both methods �tted well with

exponential decay double equations with �ve parameters, whereas respective R2 were 0.9930 and 0.9992
for sol-gel and hydrothermal methods, respectively. The most promising degradation (99.1%) at 5 hours
was exhibited by utilizing the Ce-doped TiO2 (0.28 mol.%) made via hydrothermal method. An exponential

decay double equation with three parameters was found to be interpreted the decay behavior well (R2 of
0.9945). Therefore, the hydrothermal method was con�rmed as the most feasible synthetic approach for
Ce-doped TiO2 and the same doping amount (0.28 mol.%) was applied in the subsequent studies.

Kosmulski and Tolosa et al. (2011) mentioned the pH-dependent surface charging and pH of point of
zero charges (pHpzc) [64, 65] can be a reference in searching of optimal pH either for homogeneous or
heterogeneous photocatalysis systems. As the pHpzc were critical in determining the operational pH in
wastewater treatment, pHpzc of the pristine (undoped) and Ce-doped TiO2 (0.28 mol.%) was determined
and shown in Fig. 2b. The former pHpzc of the undoped TiO2 (3.51) was consistent with previously study
[40, 51]. Also, the latter pHpzc of 2.83 for the Ce-doped TiO2 measured in this study was close to TiO2

doped with other dopants, e.g. CuSO4-doped TiO2 (pHpzc=3.84) [51] and KAl(SO4)2-doped TiO2

(pHpzc=1.90~3.39) [40].

As photocatalytic degradation e�ciency of speci�c contaminants was affected by actual conditions of
the wastewater streams, insights of the effects of operational parameters were examined intensively
here. Detailed investigating ranges of three parameters (initial pH, catalyst dosages of Ce-doped TiO2 and
initial 2-CP concentrations) that utilizes the previous optimized Ce-doped TiO2 (0.28 mol %, calcined at

600 oC) were listed in Table 2. The residual concentration of 2-CP under visible light irradiation at �ve
initially conditioned pHs were all gradually decreased over time, as displayed in Fig. 3a. The solutions
conditioned to neutral (pH 7) and slightly acidic (pH 5.5) performed better than the other three set pH. It
can be shown that at initial pH of 5.5 and 7.0, the degradation of 2-CP at the end of 4-hour irradiation is
approximately 100%. Highly acidic conditions with the pH of 3.0 and 2.0 have a good removal e�ciency
also during the 4-hour degradation of 2-CP which is about 83.9% and 85.8%, respectively. It can be seen in
Fig. 3a that the degradation pro�les with respect to time of pH 3.0 and 2.0 were quite close to each other.
Moreover, the solution conditioned to basic (pH 9.0) yielded the lowest degradation e�ciency of 2-CP.
Aggregation of TiO2 particles occur as the conditioned pH approaches to pHpzc, while it tends to stabilize
at both higher and lower pH conditions [64, 65].
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For positively charged surface, pH< pHpzc:               

TiO2+nH+↔TiO2Hn
+n                                                        (2)                      

For negatively charged surface, pH> pHpzc:              

TiO2 + nOH− ↔ TiO2(OH)n
−n                         (3)

From previously determined pHpzc of the Ce-doped TiO2 at 2.83, the surface charge of the Ce-doped TiO2

in the extreme low acidic condition (pH 2.0) was positive. But applying the photocatalyst at pH 3.0 that is
very close to its pHpzc, the charge effects may not be signi�cant. As a result, the degradation pro�les of
pH 3.0 and 2.0 were overlapping, as displayed in Fig. 3a. The best 2-CP degradations in aqueous
solutions conditioned to neutral may contributed to the surface charge of Ce-doped TiO2 which became
negative and the pKa of 2-CP is 8.56. Similar results of pH-dependent in the degradation of 4-CP were
observed by Silva et al. [58] whereas they found main deactivation mechanism of Ce-doped TiO2 is ceria
loss from the catalyst surface during reaction.

The effects various dosages of the Ce-doped TiO2 catalyst that utilized for 2-CP degradations under
visible light as shown in Fig. 3b were also investigated. Increasing the photocatalyst dosage from 1 to 3
g·L-1 increased the number of active sites available for surface adsorption and reaction. This results to
more OH and·O2

- radicals generated to facilitate photocatalytic activity that gives �nal removal in 4-hour
duration of 66.7%, 85.2% and 99.9% shown in Fig. 3b. However, further increasing the Ce-doped TiO2

dosage from 4 to 5 g·L-1, decreases the 2-CP degradation e�ciency of 97.0 % and 70.4%, respectively.
This phenomenon can be associated with the overcrowding catalysts that could block the light
absorption on the catalyst surfaces [40]. The same trends were also found in our previous studies for
CuSO4-doped TiO2 catalysts [51]. Effects of initial 2-CP concentration on the degradation performance

were also carried out from 10 to 50 mg·L-1 shown in Fig. 3c. Unsurprisingly, higher initial 2-CP
concentration yielded lower degradations. This result is obvious since this can be associated with the
pore blocking and multi-layer adsorption in the catalysts surface which will limit the release of the OH-

and O2
- radicals [40]. In summary, optimal degradation of 2-CP was achieved at the dosage of Ce–doped

TiO2 catalysts, initial pH and initial 2-CP concentration of 33g, 7.0 and 10·mg·L-1, respectively. Such
results would be helpful in practical operation of this system in wastewater treatment facility.

3.3.   Characterizations of Ce-doped TiO2 synthesized at
various calcination temperatures and doping amounts
As catalysts calcined at various temperatures possess various properties and may affects their
photocatalytic degradation e�ciencies under visible light irradiation. Characterizations of the Ce-doped
TiO2 photocatalyst were conducted by Brunauer–Emmett–Teller (BET), Langmuir, t-plot external and
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single point methods to measure its surface area, pore volume and pore size. As shown in Table 3, it can
be observed no matter which methods analyzed, surface area of the Ce-doped TiO2 photocatalyst

generally decreased with the increasing calcination temperatures from 200 to 500 oC. However, there is a
different trend in the result observed in 600 oC calcination temperature where the surface area increases. 
The occurrence is also evident with the pore volume and pore size measurements of the Ce-doped TiO2

photocatalyst. As all surface areas characterized by various methods consistently showed that the Ce-
doped TiO2 calcined at 600 oC were higher than that calcined at 200 oC, we can concluded that structures
of the Ce-doped TiO2 was not the sole factor affecting the photocatalytic degradation of 2-CP. Instead, the
cerium doping amount played a certain role as shown in the previous data in the Section 3.1 and these
characterizations obtained here. Tong et al. [59] have prepared Ce–TiO2 catalysts by controlled hydrolysis
of titanium alkoxide based on esteri�cation reaction followed by hydrothermal treatment. They doped
various cerium amounts (0.1, 0.2, 0.4, 0.6 and 1.0 wt.%) into TiO2 by the controlled hydrolysis and

calcined at 460oC (733 K) can be a reference as well. As shown in Table 3, the Ce-doped TiO2 calcined at

400 oC registered the highest pore volume of 0.2208 cm3/g among the �ve (5) calcination temperatures.
Although there is no clear relationships between calcination temperatures and pore volumes, it was noted
that there is signi�cant correlation between small particle size, large surface area and pore volume.
Consequently, calcined at either middle temperatures (e.g. 300, 400 oC or in between) can be a feasible
option for future large-scale production the Ce-doped TiO2 catalysts.

Morphology of the undoped and the TiO2 doped with low, medium and high amounts of cerium (from
0.07, 0.28 to 0.35 mol.%) can be observed by scanning electron micrographs (SEM) shown in Fig. 4. All
SEM images were taken at magnitude of 1,000 times. A more uniform distribution of spherical particles
was obtained in the undoped TiO2 as shown in Fig. 4a, while irregular shapes of crystals were obtained in
the Ce-doped TiO2 (Fig. 4b, 4c and 4d) regardless of doping amounts added. Even the diverse
distributions of the particles of Ce-doped TiO2 revealed by the SEM images. It can also see that the
presence of Cerium in the preparation of the catalysts modify the surface morphology of the TiO2 which
means that might affect the light absorption of the catalysts. The main effects on performance of 2-CP
degradation were affected by their speci�c surface area.

4. Conclusion
In summary, the degradation e�ciency of the synthesized TiO2-based photocatalysts is succesful in
degrading aqueous 2-chlorophenol via photocatalytic oxidation process. The Ce-doped TiO 2 calcined

between 300 oC and 400 oC which gives an ideal speci�c surface area, pore volume and pore size of
219.3 – 267.3 m2.g-1,  0.2052 – 0.2208 cm3.g-1, and 30.7 – 40.3 Å, respectively. However, if we based the
selection of photocatalyst in terms of pore volume, the Ce-doped TiO2 calcined at 400 oC gives the
highest result. In addition, based on the morphology of the synthesized photocatalysts using SEM shows
the divrse distribution of particles of Cerium in TiO   2. Such that it shows an excellent surface modi�cation
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of the TiO2. From the photocatalytic activity on varying Ce-doped TiO2 concentration, the dosage of 3 g.L-

1.

A priority hazardous substance, 2-chlorophenol (2-CP), was carefully reviewed degradation e�ciency by
TiO2–based photocatalysts under UV or visible light irradiation and compared diverse experimental
conditions in the literatures. Two new photocatalysts synthesized in this study, either Ce-doped TiO2

prepared by hydrothermal method or V-doped TiO2 prepared by sol-gel method, were investigated effects
of synthetic parameters on their visible-light activities via blue-LED irradiations. Furthermore, effects of
three operation parameters of the as-prepared catalysts were investigated.
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Tables
Table 1. Experimental designs of visible–light degradation of 2-CP by Ce-doped TiO2.

Experiment
No.

Parameter A:

Calcination
temperature [◦C]

Parameter B:

Amount of
cerium

[mol.% Ce/
TiO2]

Parameter C:

Amount of nitric acid [vol.%
HNO3/Ti(OBu)4]

Response Y:

Degradation
percentage [%]

Cerium

  (-1)* (+1)* (-1)* (+1)* (-1)* (+1)*  

1 200 - 0.07 - 0.05 - 64.87

2 - 600 0.07 - 0.05 - 72.21

3 200 - 0.07 - - 0.15 80.52

4 - 600 0.07 - - 0.15 78.24

5 200 - - 0.35 0.05 - 72.43

6 - 600 - 0.35 0.05 - 72.96

7 200 - - 0.35 - 0.15 99.08

8 - 600 - 0.35 - 0.15 99.10

*(+1: upper level, -1: lower level)

 

Table 2. Operational parameters of Ce-doped TiO2 and experimental ranges investigated in this study.

Operational parameters Unit Experimental ranges

Input pH --- 2.0, 3.0, 5.5, 7.0, 9.0

Photocatalysts dosage g/L 1.0, 2.0, 3.0, 4.0, 5.0

Initial 2-chlorophenol concentration ppm 10, 20, 30, 40, 50
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Page 16/19

Table 3. BET results of Ce-doped TiO2 at calcination temperatures of 200-600oC

  Surface Area  [unit: m²/g] Pore Volume

[unit: cm3/g]

Pore Size

[unit: Å]

Sample
name

BET Langmuir t-Plot

External

Single
point

Single point adsorption
total pore volume of pores

Adsorption
average pore
width

(4V/A by BET)

Ce200 275.5 391.2 319.4 254.5 0.1882 27.3

Ce300 267.3 376.1 304.0 249.8 0.2052 30.7

Ce400 219.3 308.3 243.7 207.6 0.2208 40.3

Ce500 164.7 228.6 178.2 157.2 0.2105 51.1

Ce600 201.5 281.8 214.4 191.4 0.1705 33.9

Figures
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Figure 1

Main effect plot of three synthetic parameters on 2-CP degradation percentage by using Ce-doped TiO2
under visible light irradiation.

Figure 2

(a) Comparison of the degradation e�ciencies of 2-CP by pristine TiO2 made by sol-gel method,
hydrothermal method, Ce-doped TiO2 (0.28 mol.%) made by hydrothermal method and commercially
available TiO2 (P25). (b) Measurements pHzpc of undoped and Ce-doped TiO2.
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Figure 3

Effects of (a) initial pH, (b) catalyst dosages and (c) initial 2-CP concentrations on the degradations of 2-
CP (concentrations of 20 mg·L-1) with the Ce-doped TiO2 (dosage of 3g/L) under visible light irradiation.
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Figure 4

Scanning electron micrographs of (a) undoped TiO2, and Ce-doped TiO2 doped with (b) 0.07 mol.%, (c)
0.28 mol.% and (d) 0.35 mol.% Cerium.  


