Ahammed G. J., Wang Y., Mao Q., Wu M., Yan Y., Ren J., Wang X., Liu A., Chen S., (2020) Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environ Pollut. 259. 113957. doi:10.1016/j.envpol.2020.113957
Ahammed G. J., Wang Y. Q., Mao Q., Wu M. J., Yan Y. R., Ren J. J., Wang X. J., Liu A. R., Chen S. C., (2020) Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environ Pollut. 259. doi:ARTN 113957 10.1016/j.envpol.2020.113957
Ali I., Liu B. H., Farooq M. A., Islam F., Azizullah A., Yu C. Y., Su W., Gan Y. B., (2016) Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza saliva as revealed by ultrastructure analysis. Ecotox Environ Safe. 124. 277-284. doi:10.1016/j.ecoenv.2015.10.027
Ali I., Jan M., Wakeel A., Azizullah A., Liu B. H., Islam F., Ali A., Daud M. K., Liu Y. H., Gan Y. B., (2017) Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure. Ecotox Environ Safe. 144. 62-71. doi:10.1016/j.ecoenv.2017.06.015
Arnon D. I., (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol. 24. 1-15. doi:10.1104/pp.24.1.1
Bartha B., Huber C., Schroder P., (2014) Uptake and metabolism of diclofenac in Typha latifolia - How plants cope with human pharmaceutical pollution. Plant Sci. 227. 12-20. doi:10.1016/j.plantsci.2014.06.001
Biczak R., Snioszek M., Telesinski A., Pawlowska B., (2017) Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions. Ecotox Environ Safe. 139. 463-471. doi:10.1016/j.ecoenv.2017.02.016
Bonanno G., (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotox Environ Safe. 97. 124-130. doi:10.1016/j.ecoenv.2013.07.017
Calheiros C. S. C., Rangel A. O. S. S., Castro P. M. L., (2009) Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresource Technol. 100. 3205-3213. doi:10.1016/j.biortech.2009.02.017
Cao C., Huang J., Guo Y., Yan C. N., Xiao J., Ma Y. X., Liu J. L., Guan W. Z., (2019) Long-term effects of environmentally relevant concentration of Ag nanoparticles on the pollutant removal and spatial distribution of silver in constructed wetlands with Cyperus alternifolius and Arundo donax. Environ Pollut. 252. 931-940. doi:10.1016/j.envpol.2019.05.144
Chen Z. J., Lv Y., Zhai X. Y., Yang H., (2021) Comprehensive analyses of degradative enzymes associated with mesotrione-degraded process in rice for declining environmental risks. Sci Total Environ. 758. 143618. doi:10.1016/j.scitotenv.2020.143618
Czarnocka W., Karpinski S., (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Bio Med. 122. 4-20. doi:10.1016/j.freeradbiomed.2018.01.011
Devos C. H. R., Vonk M. J., Vooijs R., Schat H., (1992) Glutathione Depletion Due to Copper-Induced Phytochelatin Synthesis Causes Oxidative Stress in Silene-Cucubalus. Plant Physiol. 98. 853-858. doi:DOI 10.1104/pp.98.3.853
Du S. T., Liu Y., Zhang P., Liu H. J., Zhang X. Q., Zhang R. R., (2015) Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chem. 173. 905-911. doi:10.1016/j.foodchem.2014.10.115
Dumitrascu M. C., Mares C., Petca R. C., Sandru F., Popescu R. I., Mehedintu C., Petca A., (2020) Carcinogenic effects of bisphenol A in breast and ovarian cancers. Oncol Lett. 20. doi:ARTN 282 10.3892/ol.2020.12145
Elstner E. F., Heupel A., (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem. 70. 616-620. doi:10.1016/0003-2697(76)90488-7
Ferrara G., Loffredo E., Senesi N., (2006) Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta. 223. 910-916. doi:10.1007/s00425-005-0147-2
Fornara D. A., Tilman D., (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol. 96. 314-322. doi:10.1111/j.1365-2745.2007.01345.x
Fornara D. A., Tilman D., (2009) Ecological mechanisms associated with the positive diversity-productivity relationship in an N-limited grassland. Ecology. 90. 408-418. doi:Doi 10.1890/08-0325.1
Fuerst E. P., Irzyk G. P., Miller K. D., (1993) Partial Characterization of Glutathione-S-Transferase Isozymes Induced by the Herbicide Safener Benoxacor in Maize. Plant Physiol. 102. 795-802. doi:DOI 10.1104/pp.102.3.795
Gabriel F. L. P., Cyris M., Giger W., Kohler H. P. E., (2007) ipso-substitution: A general biochemical and biodegradation mechanism to cleave alpha-quaternary alkylphenols and bisphenol A. Chem Biodivers. 4. 2123-2137. doi:DOI 10.1002/cbdv.200790170
Gattullo C. E., Bahrs H., Steinberg C. E. W., Loffredo E., (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ. 416. 501-506. doi:10.1016/j.scitotenv.2011.11.033
Geu-Flores F., Moldrup M. E., Bottcher C., Olsen C. E., Scheel D., Halkier B. A., (2011) Cytosolic gamma-Glutamyl Peptidases Process Glutathione Conjugates in the Biosynthesis of Glucosinolates and Camalexin in Arabidopsis. Plant Cell. 23. 2456-2469. doi:10.1105/tpc.111.083998
Gross K., (2008) Positive interactions among competitors can produce species-rich communities. Ecol Lett. 11. 929-936. doi:10.1111/j.1461-0248.2008.01204.x
Guengerich F. P., Martin M. V., Sohl C. D., Cheng Q., (2009) Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat Protoc. 4. 1245-1251. doi:10.1038/nprot.2009.121
Guida M., Troisi J., Ciccone C., Granozio G., Cosimato C., Sardo A. D., Ferrara C., Guida M., Nappi C., Zullo F., Di Carlo C., (2015) Bisphenol A and congenital developmental defects in humans. Mutat Res-Fund Mol M. 774. 33-39. doi:10.1016/j.mrfmmm.2015.02.007
Halliwell B., (1999) Oxygen and nitrogen are pro-carcinogens, Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res-Gen Tox En. 443. 37-52. doi:Doi 10.1016/S1383-5742(99)00009-5
Hamad M. T. M. H., (2020) Comparative study on the performance of Typha latifolia and Cyperus Papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands. Chemosphere. 260. doi:ARTN 127551 10.1016/j.chemosphere.2020.127551
Hamada H., Tomi R., Asada Y., Furuya T., (2002) Phytoremediation of bisphenol A by cultured suspension cells of Eucalyptus perriniana-regioselective hydroxylation and glycosylation. Tetrahedron Lett. 43. 4087-4089. doi:Pii S0040-4039(02)00647-0 Doi 10.1016/S0040-4039(02)00647-0
He Y. J., Langenhoff A. A. M., Sutton N. B., Rijnaarts H. H. M., Blokland M. H., Chen F. R., Huber C., Schroder P., (2017) Metabolism of Ibuprofen by Phragmites australis: Uptake and Phytodegradation. Environ Sci Technol. 51. 4576-4584. doi:10.1021/acs.est.7b00458
Heath R. L., Packer L., (1965) Effect of light on lipid peroxidation in chloroplasts. Biochem Bioph Res Co. 19. 716-720. doi:10.1016/0006-291x(65)90316-5
Im J., Loffler F. E., (2016) Fate of Bisphenol A in Terrestrial and Aquatic Environments. Environ Sci Technol. 50. 8403-8416. doi:10.1021/acs.est.6b00877
Inagaki Y., Cong V. H., Sakakibara Y., (2016) Identification and application of Phyto-Fenton reactions. Chemosphere. 144. 1443-1450. doi:10.1016/j.chemosphere.2015.10.039
Jiang M. Y., Zhang J. H., (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 42. 1265-1273. doi:DOI 10.1093/pcp/pce162
Jiao L. Y., Wang L. H., Qiu Z. Y., Wang Q. Q., Zhou Q., Huang X. H., (2015) Effects of bisphenol A on chlorophyll synthesis in soybean seedlings. Environ Sci Pollut R. 22. 5877-5886. doi:10.1007/s11356-014-3764-0
Jiao L. Y., Ding H. Z., Wang L. H., Zhou Q., Huang X. H., (2017) Bisphenol A effects on the chlorophyll contents in soybean at different growth stages. Environ Pollut. 223. 426-434. doi:10.1016/j.envpol.2017.01.042
Kanwar M. K., Xie D., Yang C., Ahammed G. J., Qi Z., Hasan M. K., Reiter R. J., Yu J. Q., Zhou J., (2020) Melatonin promotes metabolism of bisphenol A by enhancing glutathione-dependent detoxification in Solanum lycopersicum L. J Hazard Mater. 388. 121727. doi:10.1016/j.jhazmat.2019.121727
Kim D., Kwak J. I., An Y. J., (2018) Effects of bisphenol A in soil on growth, photosynthesis activity, and genistein levels in crop plants (Vigna radiata). Chemosphere. 209. 875-882. doi:10.1016/j. chemosphere.2018.06.146
Lee S., Liao C., Song G. J., Ra K., Kannan K., Moon H. B., (2015) Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere. 119. 1000-1006. doi:10.1016/j. chemosphere.2014.09.011
Li H., Liu J. X., Wang Y., Zhuang J., (2020) The ascorbate peroxidase 1 regulates ascorbic acid metabolism in fresh-cut leaves of tea plant during postharvest storage under light/dark conditions. Plant Sci. 296. doi:ARTN 110500
10.1016/j.plantsci.2020.110500
Li R., Liu Y., Chen G. Z., Tam N. F. Y., Shin P. K. S., Cheung S. G., Luan T. G., (2008) Physiological responses of the alga Cyclotella caspia to bisphenol A exposure. Bot Mar. 51. 360-369. doi:10.1515/Bot.2008.050
Li X., Wang L., Wang S., Yang Q., Zhou Q., Huang X., (2018) A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones. Ecotoxicol Environ Saf. 150. 152-158. doi:10.1016/j.ecoenv.2017.12.031
Li X. Y., Wang L. H., Shen F., Zhou Q., Huang X. H., (2018) Impacts of exogenous pollutant bisphenol A on characteristics of soybeans. Ecotox Environ Safe. 157. 463-471. doi:10.1016/j.ecoenv.2018.04.013
Liu J., Wang Y. F., Jiang B. Q., Wang L. H., Chen J. Q., Guo H. Y., Ji R., (2013) Degradation, Metabolism, and Bound-Residue Formation and Release of Tetrabromobisphenol A in Soil during Sequential Anoxic-Oxic Incubation. Environ Sci Technol. 47. 8348-8354. doi:10.1021/es4014322
Loffredo E., Gattullo C. E., Traversa A., Senesi N., (2010) Potential of various herbaceous species to remove the endocrine disruptor bisphenol A from aqueous media. Chemosphere. 80. 1274-1280. doi:10.1016/j.chemosphere.2010.06.054
M. Dogan O. Yumrutas, S.D. Saygi̇Deger, M. Korkunc, O. Gulnaz, A. Sokmen, (2010) Effects of bisphenol A and tetrabromobisphenol A on chickpea roots in germination stage. Am.-Eurasian J. Agric. Environ. Sci.
Ma Y., Liu H. H., Wu J. X., Yuan L., Wang Y. Q., Du X. D., Wang R., Marwa P. W., Petlulu P., Chen X. H., Zhang H. Z., (2019) The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res. 176. doi:ARTN 108575 10.1016/j.envres.2019.108575
Maehly A. C., Chance B., (1954) The assay of catalases and peroxidases. Methods of biochemical analysis. 1. 357-424.
Maher B., English K., Norman R., Sly P., Davies P., (2016) Prenatal exposure to the plasticizer bisphenol A (BPA) and adverse birth outcomes in human epidemiological studies. Clin Endocrinol. 84. 12-12.
Martinez M. A., Blanco J., Rovira J., Kumara V., Domingo J. L., Schuhmacher M., (2020) Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line. Food Chem Toxicol. 140. doi:ARTN 111298 10.1016/j.fct.2020.111298
Mattila H., Khorobrykh S., Havurinne V., Tyystjarvi E., (2015) Reactive oxygen species: Reactions and detection from photosynthetic tissues. J Photoch Photobio B. 152. 176-214. doi:10.1016/j.jphotobiol.2015.10.001
Nakajima N., Ohshima Y., Serizawa S., Kouda T., Edmonds J. S., Shiraishi F., Aono M., Kubo A., Tamaoki M., Saji H., Morita M., (2002) Processing of bisphenol A by plant tissues: Glucosylation by cultured BY-2 cells and Glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol. 43. 1036-1042. doi:DOI 10.1093/pcp/pcf130
Nakajima N., Ohshima Y., Serizawa S., Kouda T., Edmonds J. S., Shiraishi F., Aono M., Kubo A., Tamaoki M., Saji H., Morita M., (2002) Processing of bisphenol A by plant tissues: glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol. 43. 1036-1042. doi:10.1093/pcp/pcf130
Nakajima N., Oshima Y., Edmonds J. S., Morita M., (2004) Glycosylation of bisphenol A by tobacco BY-2 cells. Phytochemistry. 65. 1383-1387. doi:10.1016/j.phytochem.2004.02.027
Nakamura S., Tezuka Y., Ushiyama A., Kawashima C., Kitagawara Y., Takahashi K., Ohta S., Mashino T., (2011) Ipso substitution of bisphenol A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity. Toxicol Lett. 203. 92-95. doi:10.1016/j.toxlet.2011.03.010
Noureddin M. I., Furumoto T., Ishida Y., Fukui H., (2004) Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica). Biosci Biotech Bioch. 68. 1398-1402. doi:DOI 10.1271/bbb.68.1398
Pandey P., Srivastava R. K., Rajpoot R., Rani A., Pandey A. K., Dubey R. S., (2016) Water deficit and aluminum interactive effects on generation of reactive oxygen species and responses of antioxidative enzymes in the seedlings of two rice cultivars differing in stress tolerance. Environ Sci Pollut R. 23. 1516-1528. doi:10.1007/s11356-015-5392-8
Patterson B. D., MacRae E. A., Ferguson I. B., (1984) Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal Biochem. 139. 487-492. doi:10.1016/0003-2697(84)90039-3
Pawlowska B., Feder-Kubis J., Telesinski A., Biczak R., (2019) Biochemical Responses of Wheat Seedlings on the Introduction of Selected Chiral Ionic Liquids to the Soils. J Agr Food Chem. 67. 3086-3095. doi:10.1021/acs.jafc.8b05517
Qiu Z. Y., Wang L. H., Zhou Q., (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere. 90. 1274-1280. doi:10.1016/j.chemosPhere.2012.09.085
Reis A. R., Sakakibara Y., (2012) Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction. Water Sci Technol. 66. 775-782. doi:10.2166/wst.2012.241
Reis A. R., Tabei K., Sakakibara Y., (2014) Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants. J Hazard Mater. 265. 79-88. doi:10.1016/j.jhazmat.2013.11.042
Sasaki M., Tsuchido T., Matsumura Y., (2008) Molecular cloning and characterization of cytochrome P450 and ferredoxin genes involved in bisphenol A degradation in Sphingomonas bisphenolicum strain AO1. J Appl Microbiol. 105. 1158-1169. doi:10.1111/j.1365-2672.2008.03843.x
Sasaki M., Akahira A., Oshiman K. I., Tsuchido T., Matsumura Y., (2005) Purification of cytochrome P450 and ferredoxin, involved in bisphenol A degradation, from Sphingomonas sp strain AO1. Appl Environ Microb. 71. 8024-8030. doi:10.1128/Aem.71.12.8024-8030.2005
Shimoda K., Hamada H., (2009) Bioremediation of Bisphenol A and Benzophenone by Glycosylation with Immobilized Marine Microalga Pavlova sp. Environ Health Insights. 3. 89-94. doi:10.4137/ehi.s2758
Singh N., Ma L. Q., Srivastava M., Rathinasabapathi B., (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci. 170. 274-282. doi:10.1016/j.plantsci.2005.08.013
Staples C. A., Dorn P. B., Klecka G. M., O'Block S. T., Harris L. R., (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 36. 2149-2173. doi:Doi 10.1016/S0045-6535(97)10133-3
Stein H., Honig A., Miller G., Erster O., Eilenberg H., Csonka L. N., Szabados L., Koncz C., Zilberstein A., (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci. 181. 140-150. doi:10.1016/j.plantsci.2011.04.013
Tan L. R., Lu Y. C., Zhang J. J., Luo F., Yang H., (2015) A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants. Ecotox Environ Safe. 119. 25-34. doi:10.1016/j.ecoenv.2015.04.035
Troll W., Lindsley J., (1955) A photometric method for the determination of proline. The Journal of biological chemistry. 215. 655-660.
Wang H., Jin M. K., Xu L. L., Xi H., Wang B. H., Du S. T., Liu H. J., Wen Y. Z., (2020) Effects of ketoprofen on rice seedlings: Insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis. Environ Pollut. 263. doi:ARTN 114533
10.1016/j.envpol.2020.114533
Wang H., Jin M. K., Mao W. F., Chen C. J., Fu L. Y., Li Z., Du S. T., Liu H. J., (2020) Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. Sci Total Environ. 707. doi:ARTN 136176
10.1016/j.scitutenv.2019.136176
Wang I. J., Chen C. Y., Bornehag C. G., (2016) Bisphenol A exposure may increase the risk of development of atopic disorders in children. Int J Hyg Envir Heal. 219. 311-316. doi:10.1016/j.ijheh.2015.12.001
Wang Q. Q., Wang L. H., Han R. B., Yang L. Y., Zhou Q., Huang X. H., (2015) Effects of Bisphenol a on Antioxidant System in Soybean Seedling Roots. Environ Toxicol Chem. 34. 1127-1133. doi:10.1002/etc.2904
Wang X., Luo B., Wang L., Zhao Y., Wang Q., Li D., Gu B., Min Y., Chang S. X., Ge Y., Chang J., (2020) Plant diversity improves the effluent quality and stability of floating constructed wetlands under increased ammonium/nitrate ratio in influent. J Environ Manage. 266. 110607. doi:10.1016/j.jenvman.2020.110607
Wang X. P., Lim T. T., (2011) Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity. Appl Catal a-Gen. 399. 233-241. doi:10.1016/j.apcata.2011.04.002
Wang Y. H., Wang J. F., Zhao X. X., Song X. S., Gong J., (2016) The inhibition and adaptability of four wetland plant species to high concentration of ammonia wastewater and nitrogen removal efficiency in constructed wetlands. Bioresource Technol. 202. 198-205. doi:10.1016/j.biortech.2015.11.049
Wisniowska B., Linke S., Pirow R., Luch A., Tylutki Z., Polak S., (2020) Utilization of Physiologically Based Pharmacokinetic Modeling to Assess Dermal Uptake of Bisphenol A (BPA) and Its Skin and Systemic Exposure in Humans. Int J Toxicol. 39. 62-62.
Xiang R., Shi J. Q., Yu Y., Zhang H. B., Dong C. C., Yang Y. J., Wu Z. X., (2018) The Effect of Bisphenol A on Growth, Morphology, Lipid Peroxidation, Antioxidant Enzyme Activity, and PS II in Cylindrospermopsis raciborskii and Scenedesmus quadricauda. Arch Environ Con Tox. 74. 515-526. doi:10.1007/s00244-017-0454-1
Xiao C. Y., Wang L. H., Hu D. D., Zhou Q., Huang X. H., (2019) Effects of exogenous bisphenol A on the function of mitochondria in root cells of soybean (Glycine max L.) seedlings. Chemosphere. 222. 619-627. doi:10.1016/j.chemosphere.2019.01.195
Xiao C. Y., Wang L. H., Zhou Q., Huang X. H., (2020) Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies. J Hazard Mater. 384. doi:ARTN 121488
10.1016/j.jhazmat.2019.121488
Xu C. P., Natarajan S., Sullivan J. H., (2008) Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ Exp Bot. 63. 39-48. doi:10.1016/j.envexpbot.2007.10.029
Yamamoto T., Yasuhara A., Shiraishi H., Nakasugi O., (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere. 42. 415-418. doi:Doi 10.1016/S0045-6535(00)00079-5
Yu K., Yi S., Li B., Guo F., Peng X., Wang Z., Wu Y., Alvarez-Cohen L., Zhang T., (2019) An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. Microbiome. 7. 16. doi:10.1186/s40168-019-0634-5
Zhang J. J., Gao S., Xu J. Y., Lu Y. C., Lu F. F., Ma L. Y., Su X. N., Yang H., (2017) Degrading and Phytoextracting Atrazine Residues in Rice (Oryza sativa) and Growth Media Intensified by a Phase II Mechanism Modulator. Environ Sci Technol. 51. 11258-11268. doi:10.1021/acs.est.7b02346
Zhang J. Z., Li X. Y., Zhou L., Wang L. H., Zhou Q., Huang X. H., (2016) Analysis of effects of a new environmental pollutant, bisphenol A, on antioxidant systems in soybean roots at different growth stages. Sci Rep-Uk. 6. doi:ARTN 23782 10.1038/srep23782
Zhang J. Z., Wang L. H., Zhou Q., Huang X. H., (2018) Reactive oxygen species initiate a protective response in plant roots to stress induced by environmental bisphenol A. Ecotox Environ Safe. 154. 197-205. doi:10.1016/j.ecoenv.2018.02.020
Zheng Y. C., Wang X. C., Dzakpasu M., Zhao Y. Q., Ngo H. H., Guo W. S., Ge Y., Xiong J. Q., (2016) Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Bioresource Technol. 207. 134-141. doi:10.1016/j.biortech.2016.02.008
Zhu S. S., Huang X. C., Ho S. H., Wang L., Yang J. X., (2017) Effect of plant species compositions on performance of lab-scale constructed wetland through investigating photosynthesis and microbial communities. Bioresource Technol. 229. 196-203. doi:10.1016/j.biortech.2017.01.023