The asymptotic limit-cycle analysis of mathematical models for oscillating chemical reactions is presented. In this work, after a brief presentation of mathematical preliminaries applied to the biased Van der Pol oscillator, we consider a two-dimensional model of the Chlorine dioxide Iodine Malonic-Acid (CIMA) reactions and the three-dimensional and two-dimensional Oregonator models of the Belousov-Zhabotinsky (BZ) reactions. Explicit analytical expressions are given for the relaxation-oscillation periods of these chemical reactions that are accurate within 5% of their numerical values. In the two-dimensional CIMA and Oregonator models, we also derive critical parameter values leading to canard explosions and implosions in their associated limit cycles.