Abe, K., E. Araki, Y. Suzuki, S. Toki, and H. Saika. 2018. Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry 131(April): 58–62. doi: 10.1016/j.plaphy.2018.04.033.
de Andrade, A., A. Tulmann-Neto, F.A. Tcacenco, R. Marschalek, A. Pereira, et al. 2018. Development of rice (Oryza sativa) lines resistant to aryloxyphenoxypropionate herbicides through induced mutation with gamma rays. Plant Breeding 137(3): 364–369. doi: 10.1111/pbr.12592.
Andrés, F., D.W. Galbraith, M. Talón, and C. Domingo. 2009. Analysis of Photoperiod Sensitivity5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiology 151(2): 681–690. doi: 10.1104/pp.109.139097.
Anzalone, A. v, P.B. Randolph, J.R. Davis, A.A. Sousa, L.W. Koblan, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. doi: 10.1038/s41586-019-1711-4.
Ashraf, M., H.R. Athar, P.J.C. Harris, and T.R. Kwon. 2008. Some Prospective Strategies for Improving Crop Salt Tolerance. Advances in Agronomy 97(07): 45–110. doi: 10.1016/S0065-2113(07)00002-8.
Ayaad, M., Z. Han, K. Zheng, G. Hu, M. Abo-Yousef, et al. 2021. Bin-based genome-wide association studies reveal superior alleles for improvement of appearance quality using a 4-way MAGIC population in rice. Journal of Advanced Research 28: 183–194. doi: 10.1016/j.jare.2020.08.001.
Bainsla, N.K., and H.P. Meena. 2016. Breeding for Resistance to Biotic Stresses (J. v Yadav P, Kumar S, editor). Daya Publishing House, New Delhi.
Bairu, M.W., A.O. Aremu, and J. van Staden. 2011. Somaclonal variation in plants: Causes and detection methods. Plant Growth Regulation 63(2): 147–173. doi: 10.1007/s10725-010-9554-x.
Benavente, E., and E. Giménez. 2021. Modern Approaches for the Genetic Improvement of Rice, Wheat and Maize for Abiotic Constraints-Related Traits: A Comparative Overview. Agronomy 11(2): 376. doi: 10.3390/agronomy11020376.
Bzour, M.I., F.M. Zuki, and M.S. Mispan. 2018. Introduction of imidazolinone herbicide and Clearfield® rice between weedy rice-control efficiency and environmental concerns.
Camacho, J.R., S.D. Linscombe, Y. Sanabria, P.A. Mosquera, and J.H. Oard. 2019. Inheritance of ProvisiaTM rice resistance to quizalofop-p-ethyl under laboratory and greenhouse environments. Euphytica 215(4). doi: 10.1007/s10681-019-2407-4.
Chang, J.D., S. Huang, N. Yamaji, W. Zhang, J.F. Ma, et al. 2020. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell and Environment 43(10): 2476–2491. doi: 10.1111/pce.13843.
Chen, E., X. Huang, Z. Tian, R.A. Wing, and B. Han. 2019. The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis. Annual Review of Plant Biology 70: 639–665. doi: 10.1146/annurev-arplant-050718-100320.
Chen, J.J., and S. Matsunaka. 1990. The propanil hydrolyzing enzyme aryl acylamidase in the wild rices of genus Oryza. Pesticide Biochemistry and Physiology 38(1): 26–33. doi: 10.1016/0048-3575(90)90144-Q.
Chen, X., Y. Wang, B. Lv, J. Li, L. Luo, et al. 2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant and Cell Physiology 55(3): 604–619. doi: 10.1093/pcp/pct204.
Cui, L.G., J.X. Shan, M. Shi, J.P. Gao, and H.X. Lin. 2015. DCA1 Acts as a Transcriptional Co-activator of DST and Contributes to Drought and Salt Tolerance in Rice. PLoS Genetics 11(10): 1–22. doi: 10.1371/journal.pgen.1005617.
Dayan, F.E., A. Barker, R. Bough, M. Ortiz, H. Takano, et al. 2019. Herbicide mechanisms of action and resistance. Third Edit. Elsevier.
Dayan, F.E., and S.O. Duke. 2020. Discovery for New Herbicide Sites of Action by Quantification of Plant Primary Metabolite and Enzyme Pools. Engineering 6(5): 509–514. doi: 10.1016/j.eng.2020.03.004.
Durand-Morat, A., L.L. Nalley, and G. Thoma. 2018. The implications of red rice on food security. Global Food Security 18(April): 62–75. doi: 10.1016/j.gfs.2018.08.004.
Endo, A., H. Saika, M. Takemura, N. Misawa, and S. Toki. 2019. A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. Rice 12(1): 1–5. doi: 10.1186/s12284-019-0345-3.
Fehér, A. 2019. Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Frontiers in Plant Science 10. doi: 10.3389/fpls.2019.00536.
Forouzesh, A., E. Zand, S. Soufizadeh, and S. Samadi Foroushani. 2015. Classification of herbicides according to chemical family for weed resistance management strategies-an update. Weed Research 55(4): 334–358. doi: 10.1111/wre.12153.
Fu, X., J. Xu, M. Zhou, M. Chen, L. Shen, et al. 2019. Enhanced expression of QTL qLL9/DEP1 facilitates the improvement of leaf morphology and grain yield in rice. International Journal of Molecular Sciences 20(4). doi: 10.3390/ijms20040866.
Gaines, T.A., S.O. Duke, S. Morran, C.A.G. Rigon, P.J. Tranel, et al. 2020. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry 295(30): 10307–10330. doi: 10.1074/jbc.REV120.013572.
Gao, H., M. Jin, X.M. Zheng, J. Chen, D. Yuan, et al. 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proceedings of the National Academy of Sciences of the United States of America 111(51): 18399–18400. doi: 10.1073/pnas.1422341112.
Gressel, J., and A.A. Levy. 2006. Agriculture: The selector of improbable mutations. Proceedings of the National Academy of Sciences of the United States of America 103(33): 12215–12216. doi: 10.1073/pnas.0603666103.
Hoyos, V., G. Plaza, J.G. Vázquez-Garcia, C. Palma-Bautista, A.M. Rojano-Delgado, et al. 2021. Confirmation of Multiple Resistant Chloris radiata Population, Harvested in Colombian Rice Fields. Agronomy 11(3): 496. doi: 10.3390/agronomy11030496.
Huang, L., N. Sreenivasulu, and Q. Liu. 2020. Waxy Editing: Old Meets New. Trends in Plant Science 25(10): 963–966. doi: 10.1016/j.tplants.2020.07.009.
Huang, L., R. Zhang, G. Huang, Y. Li, G. Melaku, et al. 2018. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. Crop Journal 6(5): 475–481. doi: 10.1016/j.cj.2018.05.005.
Ishimaru, K., N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, et al. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics 45(6): 707–711. doi: 10.1038/ng.2612.
Jayabalan, S., S. Pulipati, K. Ramasamy, D. Jaganathan, S.D. Venkatesan, et al. 2019. Analysis of genetic diversity and population structure using SSR markers and validation of a Cleavage Amplified Polymorphic Sequences (CAPS) marker involving the sodium transporter OsHKT1;5 in saline tolerant rice (Oryza sativa L.) landraces. Gene 713(July): 143976. doi: 10.1016/j.gene.2019.143976.
Jiang, W., H. Zhou, H. Bi, M. Fromm, B. Yang, et al. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41(20): 1–12. doi: 10.1093/nar/gkt780.
Kajiya-Kanegae, H., H. Ohyanagi, T. Ebata, Y. Tanizawa, A. Onogi, et al. 2021. OryzaGenome2.1: Database of Diverse Genotypes in Wild Oryza Species. Rice 14(1). doi: 10.1186/s12284-021-00468-x.
Kawahara, Y., M. de la Bastide, J.P. Hamilton, H. Kanamori, W.R. Mccombie, et al. 2013. Improvement of the oryza sativa nipponbare reference genome using next generation sequence and optical map data. Rice 6(1): 3–10. doi: 10.1186/1939-8433-6-4.
Kim, K., S.C. Lee, J. Lee, Y. Yu, K. Yang, et al. 2015. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Scientific Reports 5(September): 1–13. doi: 10.1038/srep15655.
Lacchini, E., E. Kiegle, M. Castellani, H. Adam, S. Jouannic, et al. 2020. CRISPR-mediated accelerated domestication of African rice landraces. PLoS ONE 15(3): 1–12. doi: 10.1371/journal.pone.0229782.
Lang, J.M., A.L. Pérez-Quintero, R. Koebnik, E. DuCharme, S. Sarra, et al. 2019. A pathovar of Xanthomonas oryzae infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Frontiers in Plant Science 10(April): 1–15. doi: 10.3389/fpls.2019.00507.
Larkin, P.J., and W.R. Scowcroft. 1981. Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics 60(4): 197–214. doi: 10.1007/BF02342540.
Lee, D.K., P.J. Chung, J.S. Jeong, G. Jang, S.W. Bang, et al. 2017. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal 15(6): 754–764. doi: 10.1111/pbi.12673.
Li, J., H. Chu, Y. Zhang, T. Mou, C. Wu, et al. 2012. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS ONE 7(3). doi: 10.1371/journal.pone.0034231.
Li, L.F., Y.L. Li, Y. Jia, A.L. Caicedo, and K.M. Olsen. 2017. Signatures of adaptation in the weedy rice genome. Nature Genetics 49(5): 811–814. doi: 10.1038/ng.3825.
Li, M., X. Li, Z. Zhou, P. Wu, M. Fang, et al. 2016. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science 7(MAR2016): 1–13. doi: 10.3389/fpls.2016.00377.
Li, F., A. Shimizu, T. Nishio, N. Tsutsumi, and H. Kato. 2019. Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. G3: Genes, Genomes, Genetics 9(11): 3743–3751. doi: 10.1534/g3.119.400555.
Li, M., D. Tang, K. Wang, X. Wu, L. Lu, et al. 2011a. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal 9(9): 1002–1013. doi: 10.1111/j.1467-7652.2011.00610.x.
Li, H.W., B.S. Zang, X.W. Deng, and X.P. Wang. 2011b. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234(5): 1007–1018. doi: 10.1007/s00425-011-1458-0.
Lin, Q., Y. Zong, C. Xue, S. Wang, S. Jin, et al. 2020. Prime genome editing in rice and wheat. Nature Biotechnology 38(5): 582–585. doi: 10.1038/s41587-020-0455-x.
Liu, L., Y. Kuang, F. Yan, S. Li, B. Ren, et al. 2021. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2. Plant Biotechnology Journal 19(1): 5–7. doi: 10.1111/pbi.13430.
Liu, X.H., Y.S. Lyu, W. Yang, Z.T. Yang, S.J. Lu, et al. 2020a. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal 18(5): 1317–1329. doi: 10.1111/pbi.13297.
Liu, J.M., S.J. Park, J. Huang, E.J. Lee, Y.H. Xuan, et al. 2016. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice. Journal of Experimental Botany 67(6): 1883–1895. doi: 10.1093/jxb/erw002.
Liu, X., D. Wu, T. Shan, S. Xu, R. Qin, et al. 2020b. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice. Plant Molecular Biology 103(4–5): 545–560. doi: 10.1007/s11103-020-01010-1.
Lu, H., Q. Yu, H. Han, M.J. Owen, and S.B. Powles. 2019. A novel psbA mutation (Phe274–Val) confers resistance to PSII herbicides in wild radish (Raphanus raphanistrum). Pest Management Science 75(1): 144–151. doi: 10.1002/ps.5079.
Mammadov, J., R. Buyyarapu, S.K. Guttikonda, K. Parliament, I.Y. Abdurakhmonov, et al. 2018. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. Frontiers in Plant Science 9(June). doi: 10.3389/fpls.2018.00886.
Mao, H., S. Sun, J. Yao, C. Wang, S. Yu, et al. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America 107(45): 19579–19584. doi: 10.1073/pnas.1014419107.
Mao, X., Y. Zheng, K. Xiao, Y. Wei, Y. Zhu, et al. 2018. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochemical and Biophysical Research Communications 495(1): 461–467. doi: 10.1016/j.bbrc.2017.11.045.
Marx, V. 2018. Base editing a CRISPR way. Nature Methods 15(10): 767–770. doi: 10.1038/s41592-018-0146-4.
Matsumoto, T., J. Wu, H. Kanamori, Y. Katayose, M. Fujisawa, et al. 2005. The map-based sequence of the rice genome. Nature 436(7052): 793–800. doi: 10.1038/nature03895.
Matsunaka, S. 1967. Propanil Hydrolysis : Inhibition in Rice Plants by Insecticides. Science 160(3834): 1360–1361. doi: 10.1126/science.160.3834.1360.
Mba, C., R. Afza, S. Bado, and S.M. Jain. 2010. Induced Mutagenesis in Plants Using Physical and Chemical Agents. Plant Cell Culture: Essential Methods (March): 111–130. doi: 10.1002/9780470686522.ch7.
Miao Liu, J., Q. Mei, C. Yun Xue, Z. Yuan Wang, D. Pin Li, et al. 2020. Mutation of G-protein γ subunit DEP1 increases planting density and resistance to sheath blight disease in rice. Plant Biotechnology Journal: 0–2. doi: 10.1111/pbi.13500.
Nadir, S., H.B. Xiong, Q. Zhu, X.L. Zhang, H.Y. Xu, et al. 2017. Weedy rice in sustainable rice production. A review. Agronomy for Sustainable Development 37(5). doi: 10.1007/s13593-017-0456-4.
Nuñez-Muñoz, L., B. Vargas-Hernández, J. Hinojosa-Moya, R. Ruiz-Medrano, and B. Xoconostle-Cázares. 2021. Plant drought tolerance provided through genome editing of the trehalase gene. Plant Signaling and Behavior 16(4). doi: 10.1080/15592324.2021.1877005.
Oerke, E.C., and H.W. Dehne. 2004. Safeguarding production - Losses in major crops and the role of crop protection. Crop Protection 23(4): 275–285. doi: 10.1016/j.cropro.2003.10.001.
Oladosu, Y., M.Y. Rafii, N. Abdullah, G. Hussin, A. Ramli, et al. 2016. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology and Biotechnological Equipment 30(1): 1–16. doi: 10.1080/13102818.2015.1087333.
Oliva, R., C. Ji, G. Atienza-Grande, J.C. Huguet-Tapia, A. Perez-Quintero, et al. 2019. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology 37(11): 1344–1350. doi: 10.1038/s41587-019-0267-z.
Pan, G., X. Zhang, K. Liu, J. Zhang, X. Wu, et al. 2006. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Molecular Biology 61(6): 933–943. doi: 10.1007/s11103-006-0058-z.
Pedroso, R.M., K. Al-Khatib, R. Alarcón-Reverte, and A.J. Fischer. 2016. A psbA mutation (Val219 to Ile) causes resistance to propanil and increased susceptibility to bentazon in Cyperus difformis. Pest Management Science 72(9): 1673–1680. doi: 10.1002/ps.4267.
Qin, H., Y. Li, and R. Huang. 2020. Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences 21(21): 1–15. doi: 10.3390/ijms21218385.
Qu, M., Z. Zhang, T. Liang, P. Niu, M. Wu, et al. 2021. Overexpression of a methyl-CpG-binding protein gene OsMBD707 leads to larger tiller angles and reduced photoperiod sensitivity in rice. BMC Plant Biology 21(1): 1–14. doi: 10.1186/s12870-021-02880-3.
Quibod, I.L., G. Atieza-Grande, E.G. Oreiro, D. Palmos, M.H. Nguyen, et al. 2020. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. ISME Journal 14(2): 492–505. doi: 10.1038/s41396-019-0545-2.
Reddy, I.N.B.L., B.K. Kim, I.S. Yoon, K.H. Kim, and T.R. Kwon. 2017. Salt Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Science 24(3): 123–144. doi: 10.1016/j.rsci.2016.09.004.
Romero, F.M., and A. Gatica-Arias. 2019. CRISPR/Cas9: Development and Application in Rice Breeding. Rice Science 26(5): 265–281. doi: 10.1016/j.rsci.2019.08.001.
Saika, H., J. Horita, F. Taguchi-Shiobara, S. Nonaka, A. Nishizawa-Yokoi, et al. 2014. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and arabidopsis. Plant Physiology 166(3): 1232–1240. doi: 10.1104/pp.113.231266.
Sano, Y. 1984. Differential regulation of waxy gene expression in rice endosperm. Theoretical and Applied Genetics 68(5): 467–473. doi: 10.1007/BF00254822.
Santosh Kumar, V. v., R.K. Verma, S.K. Yadav, P. Yadav, A. Watts, et al. 2020. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants 26(6): 1099–1110. doi: 10.1007/s12298-020-00819-w.
Sasaki, A., N. Yamaji, K. Yokosho, and J.F. Ma. 2012. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5): 2155–2167. doi: 10.1105/tpc.112.096925.
Schindele, P., F. Wolter, and H. Puchta. 2018. Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Letters 592(12): 1954–1967. doi: 10.1002/1873-3468.13073.
Serrat, X., R. Esteban, N. Guibourt, L. Moysset, S. Nogués, et al. 2014. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10(1). doi: 10.1186/1746-4811-10-5.
Shekhawat, K., S.S. Rathore, and B.S. Chauhan. 2020. Weed management in dry direct-seeded rice: A review on challenges and opportunities for sustainable rice production. Agronomy 10(9): 1–19. doi: 10.3390/agronomy10091264.
Shen, L., Y. Hua, Y. Fu, J. Li, Q. Liu, et al. 2017. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences 60(5): 506–515. doi: 10.1007/s11427-017-9008-8.
Shufen, C., C. Yicong, F. Baobing, J. Guiai, S. Zhonghua, et al. 2019. Editing of Rice Isoamylase Gene ISA1 Provides Insights into Its Function in Starch Formation. Rice Science 26(2): 77–87. doi: 10.1016/j.rsci.2018.07.001.
Singh, V., S. Singh, H. Black, V. Boyett, S. Basu, et al. 2017. Introgression of ClearfieldTM rice crop traits into weedy red rice outcrosses. Field Crops Research 207: 13–23. doi: 10.1016/j.fcr.2017.03.004.
Song, X.J., T. Kuroha, M. Ayano, T. Furuta, K. Nagai, et al. 2015. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America 112(1): 76–81. doi: 10.1073/pnas.1421127112.
Soriano, J.D. 1961. Mutagenic Effects of Gamma Radiation on Rice. Botanical Gazette 123(1): 57–63. http://www.jstor.org/stable/2473547.
Sripinyowanich, S., P. Klomsakul, B. Boonburapong, T. Bangyeekhun, T. Asami, et al. 2013. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany 86: 94–105. doi: 10.1016/j.envexpbot.2010.01.009.
Takagi, H., M. Tamiru, A. Abe, K. Yoshida, A. Uemura, et al. 2015. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology 33(5): 445–449. doi: 10.1038/nbt.3188.
Takano-Kai, N., H. Jiang, A. Powell, S. McCouch, I. Takamure, et al. 2013. Multiple and independent origins of short seeded alleles of GS3 in rice. Breeding Science 63(1): 77–85. doi: 10.1270/jsbbs.63.77.
Takasaki, H., K. Maruyama, S. Kidokoro, Y. Ito, Y. Fujita, et al. 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics 284(3): 173–183. doi: 10.1007/s00438-010-0557-0.
Tanaka, N., M. Shenton, Y. Kawahara, M. Kumagai, H. Sakai, et al. 2020. Whole-Genome Sequencing of the NARO World Rice Core Collection (WRC) as the Basis for Diversity and Association Studies. Plant and Cell Physiology 61(5): 922–932. doi: 10.1093/pcp/pcaa019.
Tang, L., B. Mao, Y. Li, Q. Lv, L. Zhang, et al. 2017. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports 7(1): 1–12. doi: 10.1038/s41598-017-14832-9.
Tang, W., J. Ye, X. Yao, P. Zhao, W. Xuan, et al. 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications 10(1): 1–11. doi: 10.1038/s41467-019-13187-1.
Tian, P., J. Liu, C. Mou, C. Shi, H. Zhang, et al. 2019. GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology 61(11): 1171–1185. doi: 10.1111/jipb.12745.
Tiwari, G.J., Q. Liu, P. Shreshtha, Z. Li, and S. Rahman. 2016. RNAi-mediated down-regulation of the expression of OsFAD2-1: Effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC Plant Biology 16(1). doi: 10.1186/s12870-016-0881-6.
Varshney, R.K., I.D. Godwin, T. Mohapatra, J.D.G. Jones, and S.R. McCouch. 2019. A SWEET solution to rice blight. Nature Biotechnology 37(11): 1280–1282. doi: 10.1038/s41587-019-0302-0.
Viana, V.E., C. Pegoraro, C. Busanello, and A. Costa de Oliveira. 2019. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. Frontiers in Plant Science 10(November): 1–28. doi: 10.3389/fpls.2019.01326.
Wang, J., Z. Chen, Q. Zhang, S. Meng, and C. Wei. 2020. The NAC transcription factors OsNAC20 and OsNAC26 Regulate Starch and Storage Protein synthesis. Plant Physiology 184(4): 1775–1791. doi: 10.1104/pp.20.00984.
Wang, W., S. Peng, H. Liu, Y. Tao, J. Huang, et al. 2017. The possibility of replacing puddled transplanted flooded rice with dry seeded rice in central China: A review. Field Crops Research 214(August): 310–320. doi: 10.1016/j.fcr.2017.09.028.
Wang, Z., X. Tian, Q. Zhao, Z. Liu, X. Li, et al. 2018a. The E3 ligase drought hypersensitive negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice. Plant Cell 30(1): 228–244. doi: 10.1105/tpc.17.00823.
Wang, F., C. Wang, P. Liu, C. Lei, W. Hao, et al. 2016. Enhanced rice blast resistance by CRISPR/ Cas9-Targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11(4): 1–18. doi: 10.1371/journal.pone.0154027.
Wang, J., L. Zhou, H. Shi, M. Chern, H. Yu, et al. 2018b. A single transcription factor promotes both yield and immunity in rice. Science 361(6406): 1026–1028. doi: 10.1126/science.aat7675.
Wing, R.A., M.D. Purugganan, and Q. Zhang. 2018. The rice genome revolution: From an ancient grain to Green Super Rice. Nature Reviews Genetics 19(8): 505–517. doi: 10.1038/s41576-018-0024-z.
Xu, Y., Q. Lin, X. Li, F. Wang, Z. Chen, et al. 2021. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnology Journal 19(1): 11–13. doi: 10.1111/pbi.13433.
Yang, G., W. Luo, J. Zhang, X. Yan, Y. Du, et al. 2019a. Genome-Wide Comparisons of Mutations Induced by Carbon-Ion Beam and Gamma-Rays Irradiation in Rice via Resequencing Multiple Mutants. Frontiers in Plant Science 10(November): 1–13. doi: 10.3389/fpls.2019.01514.
Yang, L., W. Yueying, N. Jahan, H. Haitao, C. Ping, et al. 2019b. Genome-Wide Association Analysis and Allelic Mining of Grain Shape-Related Traits in Rice. Rice Science 26(6): 384–392. doi: 10.1016/j.rsci.2018.09.002.
Yin, X., A. Anand, P. Quick, and A. Bandyopadhyay. 2019. Editing a stomatal developmental gene in rice with CRISPR/Cpf1 (Yiping Qi, editor). Humana Press, New York, NY, New York.
Yin, X., A.K. Biswal, J. Dionora, K.M. Perdigon, C.P. Balahadia, et al. 2017. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports 36(5): 745–757. doi: 10.1007/s00299-017-2118-z.
Yu, H., T. Lin, X. Meng, H. Du, J. Zhang, et al. 2021a. A route to de novo domestication of wild allotetraploid rice. Cell 184(5): 1156-1170.e14. doi: 10.1016/j.cell.2021.01.013.
Yu, J., W. Xuan, Y. Tian, L. Fan, J. Sun, et al. 2021b. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal 19(1): 167–176. doi: 10.1111/pbi.13450.
Yuan, J., X. Wang, Y. Zhao, N.U. Khan, Z. Zhao, et al. 2020. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Scientific Reports 10(1): 1–9. doi: 10.1038/s41598-020-66604-7.
Yunyan, F., Y. Jie, W. Fangquan, F. Fangjun, L. Wenqi, et al. 2019. Production of Two Elite Glutinous Rice Varieties by Editing Wx Gene. Rice Science 26(2): 118–124. doi: 10.1016/j.rsci.2018.04.007.
Zeng, Y., J. Wen, W. Zhao, Q. Wang, and W. Huang. 2020. Rational Improvement of Rice Yield and Cold Tolerance by Editing the Three Genes OsPIN5b, GS3, and OsMYB30 With the CRISPR–Cas9 System. Frontiers in Plant Science 10(January): 1–13. doi: 10.3389/fpls.2019.01663.
Zhang, A., Y. Liu, F. Wang, T. Li, Z. Chen, et al. 2019a. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding 39(3). doi: 10.1007/s11032-019-0954-y.
Zhang, L., B. Ma, Z. Bian, X. Li, C. Zhang, et al. 2020. Grain Size Selection Using Novel Functional Markers Targeting 14 Genes in Rice. Rice 13(1): 1–16. doi: 10.1186/s12284-020-00427-y.
Zhang, J., Y. Xu, X. Wu, and L. Zhu. 2002. A bentazon and sulfonylurea sensitive mutant: Breeding, genetics and potential application in seed production of hybrid rice. Theoretical and Applied Genetics 105(1): 16–22. doi: 10.1007/s00122-002-0874-8.
Zhang, C., J. Zhu, S. Chen, X. Fan, Q. Li, et al. 2019b. Wxlv, the Ancestral Allele of Rice Waxy Gene. Molecular Plant 12(8): 1157–1166. doi: 10.1016/j.molp.2019.05.011.
Zou, J., S. Zhang, W. Zhang, G. Li, Z. Chen, et al. 2006. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant Journal 48(5): 687–698. doi: 10.1111/j.1365-313X.2006.02916.x.