[1]. Boland MJ, Rae AN, Vereijken JM, Meuwissen MP, Fischer AR, van Boekel MA, Rutherfurd SM, Gruppen H, Moughan PJ, Hendriks WH. The future supply of animal-derived protein for human consumption. Trends Food Sci Technol. 2013; 29(1):62–73.
[2]. Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol. 2012; 49(3):278–93.
[3]. Akpor OB, Jemirieyigbe ED, Oluba OM. Comparative decolouration of crystal violet dye using chicken feather fibre, chemical oxidation and bacterial cells. J Environ Sci Technol. 2018; 11: 246–253.
[4]. Zaghloul TI, Embaby AM, Elmahdy AR. Biodegradation of chicken feathers waste directed by Bacillus subtilis recombinant cells: Scaling up in a laboratory scale fermentor. Bioresour Technol. 2011; 102(3):2387–93.
[5]. Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S. A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol. 1998; 66(1):1–1.
[6]. Hou Y, Wu Z, Dai Z, Wang G, Wu G. Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J Anim Sci Biotechnol. 2017; 8(1):24.
[7]. Tesfaye T, Sithole B, Ramjugernath D, Chunilall V. Valorisation of chicken feathers: characterisation of physical properties and morphological structure. J Clean Prod. 2017; 149: 349–365.
[8]. Akpor OB, Odesola DE, Thomas RE, Oluba OM. Chicken feather hydrolysate as alternative peptone source for microbial cultivation. F1000Research. 2019, 7.
[9]. Gousterova A, Braikova D, Goshev I, Christov P, Tishinov K, Vasileva‐Tonkova E, Haertle T, Nedkov P. Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett Appl Microbiol. 2005; 40(5):335–40.
[10]. Falowo AB, Fayemi PO, Muchenje V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res Int. 2014; 64:171–81.
[11]. Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013; 51:15–25.
[12]. Kanner J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol Nutr Food Res. 2007; 51(9):1094–101.
[13]. Zhu GY, Zhu X, Wan XL, Fan Q, Ma YH, Qian J, et al. Hydrolysis technology and kinetics of poultry waste to produce amino acids in subcritical water. J Anal Appl Pyro. 2010; 88(2): 187-
191.
[14]. Ravindran V, Hew LI, Ravindran G, Bryden WL. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim Sci. 2005; 81: 85e97.
[15]. Bersuder P, Hole M, Smith G. Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J Am Oil Chem Soc. 1998; 75(2):181–7.
[16]. Yildirim A, Mavi A, Kara AA. Determination of antioxidant and antimicrobial activities of Rumex crispus L. Extracts. J Agric Food Chem. 2001; 49: 4083–4089.
[17]. Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr J Biotechnol. 2008; 7: 3188–3192.
[18]. Monjula S, John E. Biochemical changes and in vitro protein digestibility of the endosperm of germinating of Dolichoslablab. J Sci Food Agric. 1991; 55: 229±538.
[19]. Je JY, Qian ZJ, Kim SK. Antioxidant peptide isolated from muscle protein of bullfrog, Rana catesbeiana Shaw. J Med Food. 2007; 10(3):401–7.
[20]. Chan KM, Decker EA, Feustman C. Endogenous skeletal muscle antioxidants. Crit Rev Food Sci Nutr. 1994; 34(4):403–26.
[21]. Saiga AI, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem. 2003; 51(12):3661–7.
[22]. Gómez-Guillén MC, Giménez B, López-Caballero MA, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011; 25(8):1813–27.
[23]. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr. 2008; 48(5):430–41.
[24]. Tang X, He Z, Dai Y, Xiong YL, Xie M, Chen J. Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem. 2009; 58(1):587–93.
[25]. Ohba R, Deguchi T, Kishikawa M, Arsyad F, Morimura S, Kida K. Physiological functions of enzymatic hydrolysates of collagen or keratin contained in livestock and fish waste. Food Sci Technol Res. 2003; 9(1): 91–93.
[26]. Fakhfakh N, Ktari N, Siala R, Nasri M. Wool‐waste valorization: production of protein hydrolysate with high antioxidative potential by fermentation with a new keratinolytic bacterium, B acillus pumilus A1. J Appl Microbiol. 2013; 115(2):424–33.
[27]. Steiner RJ, Kellems RO, Church DC. Feather and hair meals for ruminants. IV. Effects of chemical treatments of feathers and processing time on digestibility. J Anim Sci. 1983; 57(2):495–502.
[28]. Papadopoulos MC. Processed chicken feathers as feedstuff for poultry and swine. A review. Agric Wastes. 1985; 14(4):275–90.
[29]. Oluba OM, Okongwu C, Lawal T, Akpor OB. Growth performance and toxicological assessments of chicken feather protein hydrolysate as fish meal substitute in rat diet. Asian J Sci Res. 2019; 12(3): 450—461.