Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.