Investigation on Aircraft-store Compatibility Criteria of External Store Separation

DOI: https://doi.org/10.21203/rs.3.rs-515674/v1

Abstract

The evaluation of aircraft-store compatibility on external store separation is a key issue in the separation system of vehicle design. Firstly, the aircraft-store compatibility criterion of an external store separation is put forward, and then the criterion is converted to an unequal relationship between velocity and acceleration in vertical displacement and pitch angle based on the constant force assumption, which is validated by the test result of wing pylon finned store model (WPFS). The three-dimensional compressible Reynolds average N-S equation and rigid body six-degree-of-freedom motion equation (6-DOF) are solved by using unstructured dynamic overlap grid technology, to obtain the kinematic parameters of the external separation. Finally, the most dangerous point M on the tail of the external store is selected to verify the aircraft-store separation criterion. The results show that the kinematic parameters of the most dangerous point M on the tail wing of the store fall in the safe separation area, which means that the complete separated process is safe.

Full Text

This preprint is available for download as a PDF.