1.Rodriguez-Meza MV, Paredes-Cruz M, Grijalva I, Rojano-Mejia D. Clinical and demographic profile of traumatic spinal cord injury: a Mexican hospital-based study. Spinal Cord. 2016;54(4):266–9.
2.Park SD, Kim SW, Jeon I. Brown-Sequard Syndrome after an Accidental Stab Injury of Cervical Spine: A Case Report. Korean J Neurotrauma. 2015;11(2):180–2.
3.Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L, O’Connor KC, et al. Traumatic spinal cord injury in the United States, 1993–2012. Jama. 2015;313(22):2236–43.
4.Hagen EM. Acute complications of spinal cord injuries. World J Orthop. 2015;6(1):17–23.
5.Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004;4(4):451–64.
6.Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma. 2004;21(4):429–40.
7.Bravo G, Ibarra A, Guizar-Sahagun G, Rojas G, Hong E. Indorenate improves motor function in rats with chronic spinal cord injury. Basic Clin Pharmacol Toxicol. 2007;100(1):67–70.
8.Tashiro S, Nakamura M, Okano H. The prospects of regenerative medicine combined with rehabilitative approaches for chronic spinal cord injury animal models. Neural Regen Res. 2017;12(1):43–6.
9.Ibarra A, Garcia E, Flores N, Martinon S, Reyes R, Campos MG, et al. Immunization with neural-derived antigens inhibits lipid peroxidation after spinal cord injury. Neurosci Lett. 2010;476(2):62–5.
10.Schwartz M, Kipnis J. Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. J Neurol Sci. 2005;233(1–2):163–6.
11.Ibarra A, Mendieta-Arbesu E, Suarez-Meade P, Garcia-Vences E, Martinon S, Rodriguez-Barrera R, et al. Motor Recovery after Chronic Spinal Cord Transection: A Proof-of-Concept Study evaluating a Combined Strategy. CNS Neurol Disord Drug Targets. 2018.
12.Rodriguez-Barrera R, Flores-Romero A, Fernandez-Presas AM, Garcia-Vences E, Silva-Garcia R, Konigsberg M, et al. Immunization with neural derived peptides plus scar removal induces a permissive microenvironment, and improves locomotor recovery after chronic spinal cord injury. BMC Neurosci. 2017;18(1):7.
13.Martinon S, Garcia-Vences E, Toscano-Tejeida D, Flores-Romero A, Rodriguez-Barrera R, Ferrusquia M, et al. Long-term production of BDNF and NT–3 induced by A91-immunization after spinal cord injury. BMC Neurosci. 2016;17(1):42.
14.Cruz Y, Garcia EE, Galvez JV, Arias-Santiago SV, Carvajal HG, Silva-Garcia R, et al. Release of interleukin–10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer–1 immunization after cerebral ischemia. Neural Regen Res. 2018;13(10):1743–52.
15.Cruz Y, Lorea J, Mestre H, Kim-Lee JH, Herrera J, Mellado R, et al. Copolymer–1 promotes neurogenesis and improves functional recovery after acute ischemic stroke in rats. PLoS One. 2015;10(3):e0121854.
16.Colburn RW, Rickman AJ, DeLeo JA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol. 1999;157(2):289–304.
17.Shohayeb B, Diab M, Ahmed M, Ng DCH. Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener. 2018;7:4.
18.Ruan L, Lau BW, Wang J, Huang L, Zhuge Q, Wang B, et al. Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Prog Neurobiol. 2014;115:116–37.
19.Gonzalez-Perez O, Quiñones-Hinojosa A, Garcia-Verdugo JM. Immunological control of adult neural stem cells. J Stem Cells. 2010;5(1):23–31.
20.Martino G, Pluchino S, Bonfanti L, Schwartz M. Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiol Rev. 2011;91(4):1281–304.
21.Wang X, Gao X, Michalski S, Zhao S, Chen J. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus. J Neurotrauma. 2016;33(8):721–33.
22.Su Z, Niu W, Liu ML, Zou Y, Zhang CL. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun. 2014;5:3338.
23.Duan H, Song W, Zhao W, Gao Y, Yang Z, Li X. Endogenous neurogenesis in adult mammals after spinal cord injury. Sci China Life Sci. 2016;59(12):1313–8.
24.Lacroix S, Hamilton LK, Vaugeois A, Beaudoin S, Breault-Dugas C, Pineau I, et al. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions. PLoS One. 2014;9(1):e85916.
25.Hugnot JP, Franzen R. The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front Biosci (Landmark Ed). 2011;16:1044–59.
26.Cruz Y, García EE, Gálvez JV, Arias-Santiago SV, Carvajal HG, Silva-García R, et al. Release of interleukin–10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer–1 immunization after cerebral ischemia. Neural Regen Res. 132018. p. 1743–52.
27.Garcia E, Silva-Garcia R, Mestre H, Flores N, Martinon S, Calderon-Aranda ES, et al. Immunization with A91 peptide or copolymer–1 reduces the production of nitric oxide and inducible nitric oxide synthase gene expression after spinal cord injury. J Neurosci Res. 2012;90(3):656–63.
28.Ibarra A, Hauben E, Butovsky O, Schwartz M. The therapeutic window after spinal cord injury can accommodate T cell-based vaccination and methylprednisolone in rats. Eur J Neurosci. 2004;19(11):2984–90.
29.Savage S, Ma D. Experimental behaviour testing: pain. Br J Anaesth. 114. England2015. p. 721–4.
30.Schouenborg J, Holmberg H, Weng HR. Functional organization of the nociceptive withdrawal reflexes. II. Changes of excitability and receptive fields after spinalization in the rat. Exp Brain Res. 1992;90(3):469–78.
31.Bambakidis NC, Butler J, Horn EM, Wang X, Preul MC, Theodore N, et al. Stem cell biology and its therapeutic applications in the setting of spinal cord injury. Neurosurg Focus. 2008;24(3–4):E20.
32.Ke Y, Chi L, Xu R, Luo C, Gozal D, Liu R. Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells. 2006;24(4):1011–9.
33.Carelli S, Giallongo T, Rey F, Colli M, Tosi D, Bulfamante G, et al. Neuroprotection, Recovery of Function and Endogenous Neurogenesis in Traumatic Spinal Cord Injury Following Transplantation of Activated Adipose Tissue. Cells. 2019;8(4).
34.Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR. Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex. 2003;13(6):550–9.
35.Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, et al. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells. 2011;29(12):2062–76.
36.Dehler S, Lou WP, Gao L, Skabkin M, Dallenbach S, Neumann A, et al. An Immune-CNS Axis Activates Remote Hippocampal Stem Cells Following Spinal Transection Injury. Front Mol Neurosci. 2018;11:443.
37.Martinon S, Garcia E, Gutierrez-Ospina G, Mestre H, Ibarra A. Development of protective autoimmunity by immunization with a neural-derived peptide is ineffective in severe spinal cord injury. PLoS One. 2012;7(2):e32027.
38.Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL–4 render them protective. Mol Cell Neurosci. 2005;29(3):381–93.
39.Wang J, Xie L, Yang C, Ren C, Zhou K, Wang B, et al. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front Cell Neurosci. 2015;9:361.
40.Bhattarai P, Thomas AK, Cosacak MI, Papadimitriou C, Mashkaryan V, Froc C, et al. IL4/STAT6 Signaling Activates Neural Stem Cell Proliferation and Neurogenesis upon Amyloid-beta42 Aggregation in Adult Zebrafish Brain. Cell Rep. 2016;17(4):941–8.
41.Pereira L, Font-Nieves M, Van den Haute C, Baekelandt V, Planas AM, Pozas E. IL–10 regulates adult neurogenesis by modulating ERK and STAT3 activity. Front Cell Neurosci. 2015;9:57.
42.Foltran RB, Diaz SL. BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem. 2016;138(2):204–21.
43.Cheng L, Muroi M, Cao S, Bian L, Osada H, Xiang L, et al. 3beta,23,28-Trihydroxy–12-oleanene 3beta-Caffeate from Desmodium sambuense-Induced Neurogenesis in PC12 Cells Mediated by ER Stress and BDNF-TrkB Signaling Pathways. Mol Pharm. 2019;16(4):1423–32.
44.Huang R, Zhao J, Ju L, Wen Y, Xu Q. The influence of GAP–43 on orientation of cell division through G proteins. Int J Dev Neurosci. 2015;47(Pt B):333–9.
45.Shi WQ, Zheng GY, Chen XD, Zhu YG, Zhang J, Jiang Q. [The expression of bFGF, GAP–43 and neurogenesis after cerebral ischemia/reperfusion in rats]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2013;29(1):63–7.
46.Zhao J, Yao Y, Xu C, Jiang X, Xu Q. Expression of the neural specific protein, GAP–43, dramatically lengthens the cell cycle in fibroblasts. Int J Dev Neurosci. 2009;27(6):531–7.
47.Mani S, Shen Y, Schaefer J, Meiri KF. Failure to express GAP–43 during neurogenesis affects cell cycle regulation and differentiation of neural precursors and stimulates apoptosis of neurons. Mol Cell Neurosci. 2001;17(1):54–66.