[1] LEE Y A, WALLACE M C, FRIEDMAN S L. Pathobiology of liver fibrosis: a translational success story [J]. Gut, 2015, 64(5): 830-41.
[2] TSUCHIDA T, FRIEDMAN S L. Mechanisms of hepatic stellate cell activation [J]. Nature reviews Gastroenterology & hepatology, 2017, 14(7): 397-411.
[3] PAIK Y H, KIM J, AOYAMA T, et al. Role of NADPH oxidases in liver fibrosis [J]. Antioxidants & redox signaling, 2014, 20(17): 2854-72.
[4] MORTEZAEE K. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: A review [J]. Cell biochemistry and function, 2018, 36(6): 292-302.
[5] MANTOVANI A, DINARELLO C A, MOLGORA M, et al. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity [J]. Immunity, 2019, 50(4): 778-95.
[6] MAN S M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis [J]. Nature reviews Gastroenterology & hepatology, 2018, 15(12): 721-37.
[7] WANG D, WENG Y, ZHANG Y, et al. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice [J]. The Science of the total environment, 2020, 745(141049.
[8] SHI Y, HUANG C, ZHAO Y, et al. RIPK3 blockade attenuates tubulointerstitial fibrosis in a mouse model of diabetic nephropathy [J]. Scientific reports, 2020, 10(1): 10458.
[9] CHE H, WANG Y, LI H, et al. Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-β1/Smads signaling in diabetic cardiomyopathy [J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2020, 34(4): 5282-98.
[10] SCHNABL B, BRENNER D A. Interactions between the intestinal microbiome and liver diseases [J]. Gastroenterology, 2014, 146(6): 1513-24.
[11] CSAK T, GANZ M, PESPISA J, et al. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells [J]. Hepatology (Baltimore, Md), 2011, 54(1): 133-44.
[12] WIEST R, ALBILLOS A, TRAUNER M, et al. Targeting the gut-liver axis in liver disease [J]. Journal of hepatology, 2017, 67(5): 1084-103.
[13] HIROTA S A, NG J, LUENG A, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis [J]. Inflammatory bowel diseases, 2011, 17(6): 1359-72.
[14] KWON E Y, SHIN S K, CHOI M S. Ursolic Acid Attenuates Hepatic Steatosis, Fibrosis, and Insulin Resistance by Modulating the Circadian Rhythm Pathway in Diet-Induced Obese Mice [J]. Nutrients, 2018, 10(11):
[15] CARGNIN S T, GNOATTO S B. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties [J]. Food chemistry, 2017, 220(477-89.
[16] WANG X, IKEJIMA K, KON K, et al. Ursolic acid ameliorates hepatic fibrosis in the rat by specific induction of apoptosis in hepatic stellate cells [J]. Journal of hepatology, 2011, 55(2): 379-87.
[17] YOSHIJI H, KURIYAMA S, YOSHII J, et al. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse [J]. Hepatology (Baltimore, Md), 2002, 36(4 Pt 1): 850-60.
[18] ISSA R, ZHOU X, TRIM N, et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration [J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2003, 17(1): 47-9.
[19] OKAZAKI I, WATANABE T, HOZAWA S, et al. Molecular mechanism of the reversibility of hepatic fibrosis: with special reference to the role of matrix metalloproteinases [J]. Journal of gastroenterology and hepatology, 2000, 15 Suppl(D26-32.
[20] MEDERACKE I, HSU C C, TROEGER J S, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology [J]. Nature communications, 2013, 4(2823.
[21] HERNANDEZ-GEA V, FRIEDMAN S L. Pathogenesis of liver fibrosis [J]. Annual review of pathology, 2011, 6(425-56.
[22] ROCKEY D C, WEISIGER R A. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance [J]. Hepatology (Baltimore, Md), 1996, 24(1): 233-40.
[23] EL-SERAG H B, RUDOLPH K L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis [J]. Gastroenterology, 2007, 132(7): 2557-76.
[24] PIRCALABIORU G, AVIELLO G, KUBICA M, et al. Defensive Mutualism Rescues NADPH Oxidase Inactivation in Gut Infection [J]. Cell host & microbe, 2016, 19(5): 651-63.
[25] MAGNANI F, MATTEVI A. Structure and mechanisms of ROS generation by NADPH oxidases [J]. Current opinion in structural biology, 2019, 59(91-7.
[26] AOYAMA T, PAIK Y H, WATANABE S, et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent [J]. Hepatology (Baltimore, Md), 2012, 56(6): 2316-27.
[27] LAN T, KISSELEVA T, BRENNER D A. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation [J]. PloS one, 2015, 10(7): e0129743.
[28] HUANG Y, LI Y, LOU A, et al. Alamandine attenuates hepatic fibrosis by regulating autophagy induced by NOX4-dependent ROS [J]. Clinical science (London, England : 1979), 2020, 134(7): 853-69.
[29] ZHOU J, TIAN G, QUAN Y, et al. Inhibition of P2X7 Purinergic Receptor Ameliorates Cardiac Fibrosis by Suppressing NLRP3/IL-1β Pathway [J]. Oxidative medicine and cellular longevity, 2020, 2020(7956274).
[30] MOON J S, NAKAHIRA K, CHUNG K P, et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages [J]. Nature medicine, 2016, 22(9): 1002-12.
[31] LI X X, LING S K, HU M Y, et al. Protective effects of acarbose against vascular endothelial dysfunction through inhibiting Nox4/NLRP3 inflammasome pathway in diabetic rats [J]. Free radical biology & medicine, 2019, 145(175-86.
[32] YAO Y, HU X, FENG X, et al. Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting the NLRP3 inflammasome activation via regulating the TLR4/NOX4/NF-κB pathway [J]. Journal of cellular biochemistry, 2019, 120(10): 18509-23.
[33] VAN BRUGGEN R, KöKER M Y, JANSEN M, et al. Human NLRP3 inflammasome activation is Nox1-4 independent [J]. Blood, 2010, 115(26): 5398-400.
[34] ZHANG W, GAN D, JIAN J, et al. Protective Effect of Ursolic Acid on the Intestinal Mucosal Barrier in a Rat Model of Liver Fibrosis [J]. Frontiers in physiology, 2019, 10(956.
[35] GENTILE C L, WEIR T L. The gut microbiota at the intersection of diet and human health [J]. Science (New York, NY), 2018, 362(6416): 776-80.
[36] DE MINICIS S, RYCHLICKI C, AGOSTINELLI L, et al. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice [J]. Hepatology (Baltimore, Md), 2014, 59(5): 1738-49.
[37] BAJAJ J S, BETRAPALLY N S, HYLEMON P B, et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy [J]. Hepatology (Baltimore, Md), 2015, 62(4): 1260-71.
[38] LU H, WU Z, XU W, et al. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients [J]. Microbial ecology, 2011, 61(3): 693-703.
[39] CHEN Y, YANG F, LU H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis [J]. Hepatology (Baltimore, Md), 2011, 54(2): 562-72.
[40] KANG D J, KAKIYAMA G, BETRAPALLY N S, et al. Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition [J]. Clinical and translational gastroenterology, 2016, 7(8): e187.