Abel A. Phosphate scouting by root tips. Curr Opin Plant Biol, 2017; 39: 168–177.
Abel S, Ticconi CA, Delatorre CA. Phosphate sensing in higher plants. Physiol Plant, 2002; 115(1): 1–8.
Anders S, Huber W. Differential expression analysis for sequence count data, J. Genome biology, 2010; 11(10): R106
Arite T, Kameoka H, Kyozuka J. Strigolactone positively controls crown root elongation in rice. J Plant Growth Regul, 2012; 31: 165.
Baek D, Kim MC, Chun HJ, Kang S, Park HC, Shin G, Park J, Shen M, Hong H, Kim WY, Kim DH, Lee SY, Bressan RA, Bohnert HJ, Yun DJ. Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol, 2013; 161(1): 362–373.
Chen Y, Wu P, Zhao Q, Tang Y, Chen Y, Li M, Jiang H, Wu G. Overexpression of a phosphate starvation response AP2/ERF gene from physic nut in Arabidopsis alters root morphological traits and phosphate starvation-induced anthocyanin accumulation. Front Plant Sci, 2018; 9: 1186.
Cordell D, Drangert J, White S. The story of phosphorus: global food security and food for thought. Glob Environ Change, 2009; 19(2): 292–305.
Deng QW, Luo XD, Chen YL, Zhou Y, Zhang FT, Hu BL, Xie JK. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wide rice (Oryza rufipogon Griff.). Biol Res, 2018; 51:7.
Duff SMG, Sarath G, Plaxton WC. The role of acid-phosphatases in plant phosphorus-metabolism. Physiol Plantarum, 1994; 4: 791–800.
Fan F, Cui B, Zhang T, Qiao G, Ding G, Wen X. The temporal transcriptomic response of Pinus massoniana seedlings to phosphorus deificiency. PLoS ONE, 2014; 9(8): e105068.
Fan F, Ding G, Wen X. Proteomic analyses provide new insights into the responses of Pinus massoniana seedlings to phosphorus deficiency. Proteomics, 2016; 16: 504–515.
Fang ZY, Shao C, Meng YJ, Wu P, Chen M. Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci, 2009; 176(2): 170–180.
Gho YS, An G, Park HM, Jung KH. A systemic view of phosphate starvation-responsive genes in rice roots to enhance phosphate use efficiency in rice. Plant Biot Rep, 2018; 12: 249–264.
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF. Strigolactone inhibition of shoot branching. Nature, 2008; 455: 189–194.
Hamburger D, Rezzonico E, Petetot JMC, Somerville C, Poirier Y. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell, 2002; 14(4): 889–902.
Hammond JP, Bennett MJ, Bowen HC, Broadley MR. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 2003; 132: 578–596.
Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP. Phosphorus stress in common bean: Root transcript and metabolic responses. Plant Physiol, 2007; 144(2): 752–767.
Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC. Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie, 2006; 88(11); 1767–1771.
Huang CF, Yamaji N, Ma JF. Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol, 2010; 153(4): 1669–1677.
Hurto RL, Tong AHY, Boone C, Hopper AK. Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces Cerevisiae. Genetics, 2007; 176(2): 841–852.
Kang J, Yu H, Tian C, Zhou W, Li C, Jiao Y, Liu D. Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiol, 2014; 165: 1156–1170.
Kong CH, Li HB, Hu F, Xu XH, Wang P. Allelochemicals released by rice roots and residues in soil. Plant Soil, 2006; 288: 47–56.
Lan P, Li W, Schmidt W. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol Cell Proteomics, 2012; 11(11): 1156–1166.
Lan, P, Li W, Schmidt W. Omics approaches towards understanding plant phosphorus acquisition and use. Ann Plant Rev, 2015; 48: 65–97.
Mehra P, Pandey BK, Verma L, Giri J. A novel glycerophosphodiester phosphodiesterase improves phosphate deficiency tolerance in rice. Plant Cell Environ, 2019; 42: 1167–1179.
Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008; 5(7):621- 628.
Nagy R, Vasconcelos MJ, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.).. Plant Biol, 2006; 8(02): 186–197.
Nilsson L, Müller R, Nielsen TH. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ, 2007; 301(12): 1499–1512.
Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud MC. Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci, 2011; 2: 83.
O′Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP. An RNASeq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol, 2013; 161(2): 705–724.
Poirier Y, Jung JY. Phosphate transporters. Annual Plant Reviows online, 2018; 125–158.
Russo MA, Quartacci MF, Izzo R, Belligno A, Navari-Izzo F. Long- and short-term phosphate deprivation in bean roots: plasma membrane lipid alterations and transient stimulation of phospholipase. Phytochemistry, 2007; 68(11): 1564–1571.
Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol, 2012; 193(4): 842–851.
Shen J, Yan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. Phosphorus dynamics: from soil to plant. Plant Physiol, 2011; 156(3): 997–1005.
Song L, Liu D. Ethylene and plant responses to phosphate deficiency. Front Plant Sci, 2015; 6: 796.
Tawaraya K, Honda S, Cheng W, Chuba M, Okazaki Y, Saito K, Oikawa A, Maruyama H, Wasaki J, Wagatsuma T. Ancient rice cultivar extensively replaces phospholipids with non-phosphorus glycolipid under phosphorus deficiency. Physiol Plantarum, 2018; 163(3): 297–305.
Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y, Nussaume L. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J, 2010; 64(5): 775–789
Vance CP, Uhde-Stone C, Allan DLP. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003; 157(3): 423–447.
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science, 2016; 352: 986–990.
Woo J, MacPherson CR, Liu J, Wang H, Kiba T, Hannah MA, Wang XJ, Bajic VB, Chua NH. The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Bio, 2012; 12(1): 62.
Xi J, Xu P, Xiang CB. Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. Plant J, 2012; 69(5): 782–791.
Zeng H, Wang G, Zhang Y, Hu X, Pi E, Zhu Y, Wang H, Du L. Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant Soil, 2016; 398: 207–227.
Zhang Y, Zhou Z, Ma X, Jin G. Foraging ability and growth performance of four subtropical tree species in response to heterogeneous nutrient environments. J For Res, 2010; 15: 91–98.
Zhang Z, Liao H, Lucas WJ. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol, 2014; 56: 192–220.
Zhao H, Li H, Kong C, Xu X, Liang W. Chemical response of allelopathic rice seedling under varying environmental conditions. Allelopathy J, 2005; 15: 105–110.
Zhao P, Wang L, Yin H. Transcriptional responses to phosphate starvation in Brachypodium distachyon roots. Plant Physiol Bioch, 2018; 122: 113–120.