Alagawany M, Farag MR, El-Hack MEA, Dhama K (2015) The practical application of sunflower meal in poultry nutrition. Adv Anim Vet Sci 3: 634-648. https://doi.org/10.14737/journal.aavs/2015/3.12.634.648
Arfaoui A, El Hadrami A, Daayf F (2018) Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiol Bioch 122: 121-128. https://doi.org/10.1016/j.plaphy.2017.11.014
Bañuelos GS, Lin ZQ, Broadley M (2017) Selenium Biofortification. In: Pilon-Smits EAH (ed) Selenium in plants. Springer, Berlin, pp 231-255.
Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69: 473-488. https://doi.org/10.1007/s11103-008-9435-0
Bolton MD, Thomma BP, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7: 1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x
Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293: 153-176. https://doi.org/10.1007/s11104-007-9240-6
Chaves JAA, Oliveira LM, Silva LC, Silva BN, Dias CS, Rios JA, Rodrigues FÁ (2021) Physiological and biochemical responses of tomato plants to white mold affected by manganese phosphite. J Phytopathol 169: 149-167. https://doi.org/10.1111/jph.12969
Debaeke P, Mestries E, Desanlis M, Seassau C (2014) Effects of crop management on the incidence and severity of fungal diseases in sunflower. In: Arribas JI (ed) Sunflowers: growth and development, environmental influences and pests/diseases. Nova Science Pubs, New York, pp 201-226.
Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron Sustain Dev 28: 33-46. https://doi.org/10.1051/agro:2007051
Ekins MG, Hayden HL, Aitken EAB, Goulter KC (2011) Population structure of Sclerotinia sclerotiorum on sunflower in Australia. Australasian Plant Pathol 40: 99-108. https://doi.org/10.1007/s13313-010-0018-6
El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12: 495-510. https://doi.org/10.1007/s10311-014-0476-0
Fagundes-Nacarath IRF, Debona D, Rodrigues FA (2018) Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction. Plant Physiol Bioch 129: 109-121. https://doi.org/10.1016/j.plaphy.2018.05.028
FAOSAT, Food and Agriculture data, http://www.fao.org/faostat/, (2020) (Accessed December 22, 2020)
Farooq M, Tang Z, Zeng R, Liang Y, Zhang Y, Zheng T, Ei HH, Ye X, Jia X, Zhu J (2019) Accumulation, mobilization, and transformation of selenium in rice grain provided with foliar sodium selenite. J Sci Food Agric 99: 2892-2900. https://doi.org/10.1002/jsfa.9502
Farzand A, Moosa A, Zubair M, Khan AR, Massawe VC, Tahir HAS, Sheikh TMM, Ayaz M, Gao X (2019) Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using Fengycin produced by Bacillus amyloliquefaciens FZB42. Biomolecules 9: 613. https://doi.org/10.3390/biom9100613
Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87: 58-68. https://doi.org/10.1016/j.envexpbot.2012.09.002
Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9: 436-442. https://doi.org/10.1016/j.pbi.2006.05.014
Guo S, Ge Y, Jom KN (2017) A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem Cent J 11: 95. https://doi.org/10.1186/s13065-017-0328-7
Guo X, Stotz HU (2007) Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Microbe In 20: 1384-1395. https://doi.org/10.1094/MPMI-20-11-1384
Hanson B, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159: 461-469. https://doi.org/10.1046/j.1469-8137.2003.00786.x
Hu T, Li H, Li J, Zhao G, Wu W, Liu L, Wang Q, Guo Y (2018) Absorption and bio-transformation of selenium nanoparticles by wheat seedlings (Triticum aestivum L.). Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00597
Kápolna E, Hillestrom PR, Laursen KH, Husted S, Larsen EH (2009) Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem 115: 1357-1363. https://doi.org/10.1016/j.foodchem.2009.01.054
Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe In 21: 605-612. https://doi.org/10.1094/MPMI-21-5-0605
Li Q, Ai G, Shen D, Zou F, Wang J, Bai T, Chen Y, Li S, Zhang M, Jing M, Dou D (2019) A Phytophthora capsici effector targets ACD11 binding partners that regulate ROS-mediated defense response in Arabidopsis. Mol Plant 12: 565-581. https://doi.org/10.1016/j.molp.2019.01.018
Liang XF, Jeffrey, AR (2018) Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology 108: 1128-1140. http://doi.org/10.1094/PHYTO-06-18-0197-RVW
Liang Y, Strelkov SE, Kav NNV (2009) Oxalic acid-mediated stress responses in Brassica napus L. Proteomics 9: 3156-3173. https://doi.org/10.1002/pmic.200800966
Liang Y, Xiong W, Steinkellner S, Feng J (2018) Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum. Mol Plant Pathol 19: 1444-1453. https://doi.org/10.1111/mpp.12627
Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W, Sheng J, Shen L (2019) Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J Agr Food Chem 67: 6116-6124. https://doi.org/10.1021/acs.jafc.9b00058
Liu J, Zhang Y, Meng Q, Shi F, Ma L, Li Y (2017) Physiological and biochemical responses in sunflower leaves infected by Sclerotinia sclerotiorum. Physiol Mol Plant P 100: 41-48. https://doi.org/10.1016/j.pmpp.2017.06.001
Liu K, Zhao Y, Chen F, Fang Y (2015) Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein. Food Chem 187: 424-430. https://doi.org/10.1016/j.foodchem.2015.04.086
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001
Ma L, Zhang Y, Meng Q, Shi F, Liu J, Li Y (2018) Enhancement of Sclerotina sclerotiorum and oxalic acid resistance in tobacco by a novel pathogen‐induced GST gene from sunflower. Crop Sci 58: 1318-1327. https://doi.org/10.2135/cropsci2017.08.0479
Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R (2020) Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci Horticulturae 272: 109573. https://doi.org/10.1016/j.scienta.2020.109537
Na R, Luo Y, Bo H, Zhang J, Jia R, Meng Q, Zhou H, Hao J, Zhao J (2018) Response of sunflower induced by Sclerotinia sclerotiorum infection. Physiol Mol Plant P 102: 113-121. https://doi.org/10.1016/j.pmpp.2017.12.004
Nováková M, Šašek V, Dobrev PI, Valentová O, Burketová L (2014) Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum – reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiol Bioch 80: 308-317. https://doi.org/10.1016/j.plaphy.2014.04.019
Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8: 335-342. https://doi.org/10.1016/S1360-1385(03)00135-3
Penninckx IAMA, Thomma BPHJ, Buchala A, Métraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103-2113. https://doi.org/10.1105/tpc.10.12.2103
Quiterio-Gutiérrez T, Ortega-Ortiz H, Cadenas-Pliego G, Hernández-Fuentes AD, Sandoval-Rangel A, Benavides-Mendoza A, Cabrera-de la Fuente M, Juárez-Maldonado A (2019) The application of selenium and copper nanoparticles modifies the biochemical response of tomato plants under stress by Alternaria solani. Int J Mol Sci 20: 1950. https://doi.org/10.3390/ijms20081950
Ranjan A, Jayaraman D, Grau C, Hill JH, Whitham SA, Ané JM, Smith DL, Kabbage M (2018) The pathogenic development of Sclerotinia sclerotiorum in soybean requires specific host NADPH oxidases. Mol Plant Pathol 19: 700-714. https://doi.org/10.1111/mpp.12555
Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171: 85-91. https://doi.org/10.1016/j.jplph.2013.09.024
Seiler GJ, Qi LL, Marek LF (2017) Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57: 1083-1101. https://doi.org/10.2135/cropsci2016.10.0856
Sharma P, Sharma P, Arora P, Verma V, Khanna K, Saini P, Bhardwaj R (2019) Role and regulation of ROS and antioxidants as signaling molecules in response to abiotic stresses. In: Khan MIR (ed) Plant Signaling Molecules. Woodhead, Cambridge, pp 141-156. https://doi.org/10.1016/B978-0-12-816451-8.00008-3
Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3: 348-351. https://doi.org/10.1016/j.chom.2008.05.009
Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14: 691-699. https://doi.org/10.1016/j.pbi.2011.07.014
Tiwari S, Tiwari S, Singh M, Singh A, Prasad SM (2017) Generation mechanisms of reactive oxygen species in the plant cell: An Overview. In: Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK (Eds.) Revisiting the Role of Reactive Oxygen Species (ROS) in Plants: ROS Boon or Bane for Plants. Wiley, New York, pp. 1-22.
Torres MA, Jones JD, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141: 373-378. https://doi.org/10.1104.pp.106.079467
Toscano S, Romano D, Tribulato A, Patanè C (2017) Effects of drought stress on seed germination of ornamental sunflowers. Acta Physiol Plant 39: 184. https://doi.org/10.1007/s11738-017-2484-8
Wang K, Wang Y, Li K, Wan Y, Wang Q, Zhuang Z, Guo Y, Li H (2020) Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.). J Nanobiotechnol 18: 103. https://doi.org/10.1186/s12951-020-00659-6
Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S (2009) Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol Plant Microbe In 22: 235-244. https://doi.org/10.1094/MPMI-22-3-0235
Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7: e1002107. https://doi.org/10.1371/journal.ppat.1002107
Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: acritical review. Nutrients 7: 4199-4239. https://doi.org/10.3390/nu7064199
Wu Z, Yin X, Bañuelos GS, Lin ZQ, Zhu Z, Liu Y, Yuan L, Li M (2016) Effect of selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Front Microbiol 6: 1441. https://doi.org/10.3389/fmicb.2015.01441
Wu M, Cong X, Li M, Rao S, Liu Y, Guo J, Zhu S, Chen S, Xu F, Cheng S, Liu L, Yu T (2020) Effects of different exogenous selenium on Se accumulation, nutrition quality, elements uptake, and antioxidant response in the hyperaccumulation plant Cardamine violifolia. Ecotox Environ Safe 204: 111045. https://doi.org/10.1016/j.ecoenv.2020.111045
Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66: 2839-2856. https://doi.org/10.1093/jxb/erv089
Xu H, Yan J, Qin Y, Xu J, Shohag MJI, Wei Y, Gu M (2020) Effect of different forms of selenium on the physiological response and the cadmium uptake by rice under cadmium stress. Int J Env Res Pub He 17: 6991. https://doi.org/10.3390/ijerph17196991
Yang B, Rahman MH, Liang Y, Shah S, Kav NN (2010) Characterization of defense signaling pathways of Brassica napus and Brassica carinata in response to Sclerotinia sclerotiorum challenge. Plant Mol Biol Rep 28: 253-263. https://doi.org/10.1007/s11105-009-0149-5
Yang YX, Ahammed GJ, Wu C, Fan S, Zhou YH (2015) Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr Protein Pept Sc 16: 450-461. https://doi.org/10.2174/1389203716666150330141638
Zhang X, He H, Xiang J, Yin H, Hou T (2020) Selenium-containing proteins/peptides from plants: A review on the structures and functions. J Agr Food Chem 68: 15061-15073. https://dx.doi.org/10.1021/acs.jafc.0c05594
Zhao J, Buchwaldt L, Rimmer SR, Sharpe A, McGregor L, Bekkaoui D, Hegedus D (2009) Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. Mol Plant Pathol 10: 635-649. https://doi.org/10.1111/j.1364-3703.2009.00558.x
Zhou J, Sun A, Xing D (2013) Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. J Exp Bot 64: 3261-3272. https://doi.org/10.1093/jxb/ert166